Извещатели оптико-электронные пассивные (инфракрасные). Принцип действия оптико-электронного извещателя, область использования пассивных и активных устройств Оптико электронный пассивный поверхностный извещатель

Данные приборы являются устройствами, использующими оптические приборы и сенсоры для нахождения несанкционированного события. Конечный анализ сигнала проходит в электронной схеме. Оптико-электронные извещатели часто применяются в охранных и пожарных системах сигнализации.

Главными преимуществами, из-за которых они так популярны, являются:

  1. высокая работоспособность;
  2. различные зоны нахождения;
  3. небольшая стоимость.

Оптическая часть данных приборов работает в инфракрасной области излучений. Есть много способов установки инфракрасных приборов.

Пассивные

Применяются в охранных системах. Главными достоинствами являются низкая цена и большой диапазон применения. Пассивные приборы анализируют изменения ИК излучения.

Активные

Принцип работы состоит из оценивания разницы интенсивности ИК луча, который вырабатывается излучателем. Излучатель и приёмник могут находиться в разных блоках и в одном. В первом случае охраняется только та часть территории, которая находится между ними.

Если оба прибора находятся в одном модуле, то используется специальный отражатель.

Также существуют адресные оптико-электронные приборы, которые передают сигнал ПКП и указывают уникальный для любого прибора код. Благодаря этому можно с точностью узнать место, где сработал датчик. Однако цена на такие устройства выше, но если вы хотите надежную систему, то такой вариант больше всех подходит.

Есть ещё один вид извещателей - адресно-аналоговый. Такой вариант передаёт оцифрованную информацию в ПКП, где решается о применении сигнала тревоги.

Существует несколько вариантов передачи данных: проводной и радиоканальный.

Охранные извещатели

Зоны нахождения этих устройств могут быть и объёмные, и поверхностные, и линейные. Любой из этих видов - датчик движения, получается, что находит движение на охраняемой территории.

Использование поверхностных приборов сдерживает блокировкой сооружений внутри помещения. Линейные обычно применяются для уличных территорий.

Оптико-электронные приборы негативны к наличию воздушных потоков и к посторонним источникам света.

Активные линейные устройства меньше остальных, зависимы от влияния внешних факторов. Но они трудны в настройке, тем более при применении устройств с большим радиусом действий.

Пожарные извещатели

Данный вид приборов разделяется на точеные и линейные извещатели . В первом случае устройство обладает дымовым блоком и представляет собой лабиринт, на концах которого передатчик и приёмник. Если внутрь проникает дым, то ИК излучение рассеивается и это отмечает приёмник.

Такие приборы применяются на многих объектах, в основном служебных, то есть офисы магазины и так далее. По виду отправки сигнала данных оптико-электронные извещатели делятся на пороговые, и адресно-аналоговые . А по способу соединения с устройствами пожарной системы разделяются на проводные и радиоканальные.

Такие приборы достаточно универсальны и помогают в обеспечении пожарной безопасности. Но для больших помещений данный вид извещателей применять лучше не стоит.

В таких случаях лучше подходят линейные оптико-электронные приборы. Они управляют плотностью воздуха с помощью обработки параметров ИК. Линейные извещатели включают в себя передатчик и приёмник и являются активными устройствами.

Популярные модели

Артон-ИПД 3.1М

Извещатель пожарный дымовой оптический точечный СПД-3.1 (ИПД-3.1М). Устройство предназначено для обнаружения возгораний в закрытых помещениях зданий и сооружений, сопровождающихся появлением дыма. По срабатыванию передаёт сигнал на ППК.

Рассчитан на непрерывную круглосуточную работу по постояннотоковому или знакопеременному двухпроводному шлейфу пожарной сигнализации. Номинальное напряжение питания шлейфа 12 или 24 В. Для работы извещателей с ППК по четырехпроводной схемой подключения извещателей применяется модуль согласования шлейфов МУШ-2.

Астра-7Б (ИО409-15Б)

Извещатель охранный объемный оптико-электронный. Предназначен для обнаружения проникновения в охраняемое пространство и формирование извещения о тревоге путем размыкания выходных контактов сигнального реле.

Устанавливается на потолке, зона обнаружения круговая объемная, максимальная высота установки до 5 метров. Микропроцессорный анализ сигнала, температурная компенсация, устойчивость к внешней засветке, контроль вскрытия корпуса, оптоэлектронное реле. Может работать при температурах от -30 до +50 С и влажности до 95%.

AMBER

Предназначен для обнаружения проникновения в охраняемое пространства закрытого помещения. Формирует сигнал тревоги путем размыкания контактов реле. Широко применяется в системах охранной сигнализации.

Фиксирует перемещение в зоне дальностью 12м и шириной 20м, угол обзора 90 градусов. Рекомендуемая высота установки 2,4м. Напряжение питания 12В, работает при температурах от -30 до +55С. Обнаруживает перемещение на скоростях 0,3..3 м/с.

Полезное видео

В ролике подробно объясняется устройство и принцип действия приборов на примере дымового автономного извещателя ДИП-34АВТ от компании .

Заключение

Оптико-электронные излучатели являются распространённым и эффективным компонентом для систем охранно-пожарной сигнализации. К их главным достоинствам относятся сравнительно низкая цена, универсальность, надёжность.

Главным ограничением по применению таких устройств является проблемы при работе в обстановке с большим содержанием пыли, то есть в производственных помещениях. Также оптико-электронные извещатели подвержены электромагнитными помехами.

В системах охранной сигнализации извещатели, имеющие оптико электронный принцип действия используются инсталляторами широко и охотно. Давайте разберемся как они работают, а также рассмотрим достоинства, недостатки и область применения этих устройств.

Ключевым в названии таких приборов является слово "оптико" - то есть оптический. Правда диапазон, в котором они работают для человеческого глаза невидим, поскольку смещен в инфракрасную (ИК) область. Все приборы рассматриваемого принципа действия подразделяются на две группы:

  • пассивные,
  • активные.

Первые встречаются чаще за счет простоты установки и настройки. Они состоят из приемника, специальной линзы и электронного блока обработки сигнала (вот и вторая часть названия). Среди них тоже существует подразделение на:

  • поверхностные,
  • линейные.

Эти названия происходят от типа зоны обнаружения - то есть конфигурации части пространства в котором оптико электронный извещатель способен обнаружить тревожное событие. Этим событием является перемещение тела определенной массы с определенной скоростью. Эти параметры определяются его техническими характеристиками.

Диапазон обнаруживаемых скоростей начинается, как правило, со значения 0,3 м/сек. Что касается массы, то здесь многое зависит от дальности до объекта, высоты установки извещателя. В любом случае, человек обнаруживается без проблем, домашние животные, в большинстве случаев, тоже. Поэтому, существуют объемные инфракрасные извещатели с "защитой" от домашних животных, массой, скажем до 10 или 20 кг (прописывается в паспорте).

Общим недостатком всех пассивных оптико электронных датчиков является чувствительность к конвекционным воздушным потокам, будь то теплый воздух от отопительного прибора или тривиальный сквозняк. Поэтому при определении мест установки этих извещателей подобные моменты учитываются в обязательном порядке. Также критичным является жесткость несущей конструкции (отсутствие вибраций в процессе эксплуатации) и защита от посторонних засветок.

ОБЛАСТЬ ПРИМЕНЕНИЯ ОХРАННЫХ ИК ИЗВЕЩАТЕЛЕЙ

В системах охранной сигнализации инфракрасные датчики используются,. как правило, для организации второго рубежа защиты, то есть контроля внутреннего объема помещений за счет обнаружения в них движения потенциального нарушителя. Однако, поверхностные и линейные устройства могут использоваться для охраны периметра.

Пассивные поверхностные извещатели используются для обнаружения проникновения через двери, окна, всевозможные люки и перекрытия. Недостаток этого способа их применения только один - они сработают когда нарушитель будет уже внутри помещения. То есть речи о раннем обнаружении попытки проникновения не идет.

Все пассивные устройства имеют сравнительно небольшое расстояние обнаружения 10-20 метров. Объемные - поменьше, линейные побольше. Это свойство определяет их установку внутри небольших помещений. Если требуется оборудовать охранной сигнализацией большие площади, то можно:

  • установить несколько пассивных датчиков,
  • использовать активные инфракрасные извещатели.

Кстати, последние предназначены, как правило, для охраны протяженных периметров открытых площадок, поэтому имеют линейную зону обнаружения. Кроме того, другие типы зон для активных устройств реализовать технически невозможно. Для увеличения вертикальной площади контроля используют многолучевые извещатели.

Инфракрасные датчики критичны к оптической плотности среды (дождь, снег, туман), поэтому это следует учитывать при их уличной установке.

В заключение можно привести несколько наиболее популярных линеек моделей оптико электронных извещателей отечественных производителей. Это извещатели типа:

  • Астра,
  • Фотон,
  • Икар.

Все они выпускаются различных исполнений как по способу установки так и по параметрам зоны обнаружения. Например, Астра 5А - объемный извещатель, 5Б - поверхностный, 5В -линейный.

© 2010-2019 г.г.. Все права защищены.
Материалы, представленные на сайте, имеют ознакомительно-информационный характер и не могут использоваться в качестве руководящих документов

Оптико-электронные извещатели .

Оптико-электронные извещатели бывают двух принципиально различных типов: пассивные и активные. В данной лекции мы будем рассматривать только извещатели применяемые для целей охранной сигнализации. Пожарная составляющая будет рассмотрена в лекции, посвященной пожарным извещателям . Напомню, что пассивные извещатели ничего не излучают в среду, а только анализируют поступающую информацию. Активные для целей обнаружения проникновения излучают нечто в среду и по пришедшему отклику делают соответствующие выводы. Активные извекщатели могут быть как моноблочными (излучатель и приемник в одном корпусе), так и дву - и более блочными, когда излучатель и приемник разнесены.

Рассмотрим вначале

Пассивные оптикоэлектронные извещатели

В настоящее время пассивные оптико-электронные инфракрасные (ИК ) извещатели занимают лидирующие позиции при выборе защиты помещений от несанкционированного вторжения на объектах охраны. Эстетичный внешний вид, простота монтажа, настройки и обслуживания обеспечивают им приоритетное значение по сравнению с другими средствами обнаружения.

Принцип работы пассивных оптико-электронных ИК извещателей основан на восприятии изменения уровня инфракрасного излучения температурного фона, источниками которого являются тело человека или мелких животных, а также всевозможных предметов, находящихся в поле их зрения.

Инфракрасное излучение – это тепло, которое излучается всеми нагретыми телами. В пассивных оптико-электронных ИК извещателях инфракрасное излучение попадает на линзу Френеля, после чего фокусируется на чувствительном пироэлементе , расположенном на оптической оси линзы

Пассивные ИК извещатели принимают потоки инфракрасной энергии от объектов и преобразуются пироприемником в электрический сигнал, который поступает через усилитель и схему обработки сигнала на вход формирователя тревожного извещения.

Пассивные инфракрасные извещатели предназначены для обнаружения человека, находящегося в пределах зоны чувствительности. Основная задача извещателя - обнаружить инфракрасное излучение человеческого тела. Как видно из рисунка 1, тепловое излучение человеческого тела находится в пределах спектрального диапазона электромагнитного излучения с длинами волн 8-12 микрон. Это так называемое равновесное свечение человеческого тела, максимум длины излучения которого полностью определяется температурой и для 37°С соответствует приблизительно 10 микронам. Существует целый ряд физических принципов и соответствующих устройств, которые применяются для регистрации излучения в указанном спектральном диапазоне. Для пассивных инфракрасных извещателей следует использовать чувствительный элемент с оптимальным соотношением чувствительность/стоимость. Таким чувствительным элементом является пироэлектрический фотоэлемент.





Рис. 1. Спектральная зависимость интенсивности свечения: солнца, флюоресцентной лампы, лампы накаливания, человеческого тела и спектра пропускания ряда блокирующих видимый свет фильтров: кремниевый фильтр, просветленный кремниевый фильтр, фильтр с длиной волны среза 5 мкм и фильтр с длиной волны среза 7 мкм.

Явление пироэлектричества состоит в возникновении наведенной разности потенциалов на противоположных сторонах пироэлектрического кристалла при его неравновесном кратковременном нагревании. Со временем электрические заряды из внешних электрических цепей и перераспределение зарядов внутри кристалла приводят к релаксации наведенного потенциала. Из вышесказанного следует:




частота прерывания (Гц ).



Рис. 2. Зависимость величины сигнала отклика пироэлемента от частоты прерывания регистрируемого теплового ИК-сигнала .



1. Для эффективной пироэлектрической регистрации теплового излучения необходимо применять прерыватель с оптимальной частотой прерывания излучения около 0,1 Гц (рис. 2). С другой стороны это означает, что если используется безлинзовая конструкция пироэлектрического элемента, он сможет зарегистрировать человека лишь при его входе в пределы диаграммы направленности (рис. 3, 4) и при выходе из нее со скоростью 1 - 10 сантиметров в секунду.






Рис. 3, 4. Форма диаграммы направленности спаренного корпусированного пироэлектрического элемента в горизонтальной (Рис. 3.) и вертикальной (Рис. 4.) плоскостях.



2. Для повышения чувствительности пироэлектрического элемента к величине перепада температур (разница между фоновой температурой и температурой тела человека) необходимо сконструировать его, выдержав минимально возможные размеры, с целью уменьшения количества тепла, необходимого для заданного повышения температуры чувствительного элемента. Размеры чувствительного элемента нельзя чрезмерно уменьшать, так как это приведет к ускорению релаксационных характеристик, что эквивалентно уменьшению чувствительности. Существует оптимальный размер. Минимальная чувствительность обычно находится на уровне 0,1°С для пироэлемента размером 1 х 2 мм и толщиной несколько микрон.





Рис. 5. Внешний вид чувствительного элемента пироэлектрического пассивного ИК-извещателя .



Можно четко сформулировать условия обнаружения человека с помощью инфракрасного извещателя . Инфракрасный извещатель предназначен для обнаружения движущихся объектов с температурой, отличной от фонового значения. Диапазон регистрируемых скоростей перемещения: 0,1 - 1,5 м/сек. Таким образом инфракрасный извещатель не регистрирует неподвижные объекты, даже если их температура превышает уровень фона (неподвижный человек) или если объект с температурой, отличной от фона, перемещается таким образом, что не пересекает чувствительных зон извещателя (например перемещается вдоль чувствительной зоны). Конечно, строго говоря, чувствительный элемент вообще не регистрирует перемещение, он регистрирует измерение температуры в отдельно взятой части пространства, которая является следствием перемещения человека. Необходимо всегда помнить, что чувствительный элемент обнаруживает перемещение не «на извещатель », а поперек. Избавление от этого недостатка происходит за счет конструктива линз.

Естественно, что высокая чувствительность инфракрасного извещателя достигается путем применения линзовой системы концентрации входящего излучения (рис. 6). В инфракрасном извещателе линзовая система выполняет две функции.






Рис. 6. Варианты формирования диаграммы направленности ИК-извещателей в зависимости от типа линзовой системы.



Во-первых, линзовая система служит для фокусировки излучения на пироэлектрическом элементе.

Во-вторых, она предназначена для пространственного структурирования чувствительности извещателя . При этом формируются пространственные зоны чувствительности, которы как правило, имеют форму «лепестков», а их количество достигает нескольких десятков. Объект обнаруживается при каждом входе и выходе из чувствительных зон.

Обычно различают следующие виды диаграммы чувствительности, которую называют также диаграммой направленности.

1). Стандартная - веерная по азимуту и многоярусная по углу места (рис. 6а).

2). Узконаправленная - одно- или двухлучевая дальнодействующая по азимуту и многоярусная по углу места (рис. 6б).

3). Штороподобная - узконаправленная по азимуту и веероподобная по углу места (рис. 6в).

Существует также круговая диаграмма направленности (в частности, для извещателей , устанавливаемых на потолке помещения), а также ряд других.

Рассмотрим варианты конструктивного исполнения системы формирования диаграммы направленности (рис. 7). Эта оптическая система может быть либо линзовой, либо зеркальной. Изготовление обычной линзовой системы с учетом требования формирования пространственно структурированной диаграммы направленности является дорогостоящей задачей, поэтому обычные линзы в пассивных инфракрасных датчиках не применяются. Применяются так называемые линзы Френеля. В обычной линзе для направленного отклонения света (фокусировки) используется специальная сферическая форма поверхности, материал линзы имеет коэффициент оптического преломления, отличный от коэффициента преломления окружающей среды. В линзе Френеля используется явление дифракции, которое проявляется в частности в отклонении светового луча при прохождении через узкую щель. Линза Френеля изготавливается методом штамповки и поэтому стоит дешево. Недостатком применения линзы Френеля является неизбежная потеря половины энергии излучения в результате его дифракционного отклонения линзой в направлении, отличном от направления на пироэлектрический элемент.



Рис. 7. Конструктивные варианты исполнения охранных пассивных ИК-извещателей : с линзой Френеля и с зеркальной фокусирующей системой.

Зеркальная линза более эффективна по сравнению с линзой Френеля. Она изготавливается из пластической массы методом штамповки с последующим покрытием структурированной поверхности светоотражающим покрытием, не изменяющим своих свойств со временем (до 10 лет). Наилучшим покрытием является золото. Отсюда и более высокая, приблизительно в два раза, стоимость пассивных инфракрасных извещателей с зеркальной системой по сравнению с линзовой. Кроме того извещатели с зеркальной системой имеют большие габариты по сравнению с извещателями , оснащенными линзами Френеля.

Зачем применяют более дорогие извещатели с зеркальной системой концентрации входящего излучения? Важнейшей характеристикой извещателя является его чувствительность. Чувствительность практически одинакова в перерасчете на единицу площади входного окна извещателя . Это, в частности, означает, что если проектируют пассивный инфракрасный извещатель с повышенной чувствительностью, то вынуждены увеличивать размер зоны концентрации излучения - площадь входного окна, а, значит, и сам извещатель (максимальная чувствительность современных пассивных ИК-извещателей позволяет производить обнаружение человека на расстоянии до 100 метров). Если положить наличие потерь полезного сигнала за счет несовершенства линзы, то необходимо повысить коэффициент усиления электронной схемы обработки электрического сигнала, формируемого чувствительным элементом. При условии одинаковой чувствительности коэффициент усиления электрической схемы в зеркальном извещателе в два раза меньше, чем в извещателе с линзой Френеля. Это обозначает, что в извещателях с линзой Френеля выше вероятность ложного срабатывания, вызванная помехами в электронной схеме. Достаточно часто используют и ту и другую технологии вместе, так в извещателе Астра-5исп. А основная зона формируется зонами из линз Френеля, антисаботажная зона непосредственно под извещателем – маленьким зеркалом, изготовленным довольно кустарным способом. Вообще, рынок охранных извещателей заполонен довольно дешевыми изделиями, цена которых колеблется в диапазоне 300-900 рублей за штуку с существенным перевесом в сторону наименьшей цены. Естественно в таких условиях говорить о каких-то позолоченных зеркалах не представляется возможным.

Еще раз вернемся к оптической схеме извещателя . Кроме линзовой системы и оптического «отрезающего» фильтра, установленного непосредственно в корпусе чувствительного элемента, для уменьшения ложных срабатываний, вызванных всевозможными источниками излучения, применяют различные оптические фильтрующие элементы («белый» фильтр, «черное» зеркало и т.п.), задача которых минимизировать попадание постороннего оптического излучения на поверхность пироэлектрического элемента.

Входное окно большинства ИК-извещателей выполнено в виде «белого» фильтра. Этот фильтр изготовлен из материала, рассеивающего видимый свет, но в то же время не влияющего на распространение инфракрасного излучения. В силу дешевизны в дешевых извещателях используют полиэтилен близкий по своим свойствам к используемому для пищевых пакетов, в более дорогих – молочного цвета, который хорошо пропускает ИК-лучи , но плохо видимый спектр, что нам и надо.

Линзы Френеля постоянно совершенствуются. Прежде всего путем придания линзе сферической формы, минимизирующей аберрации по сравнению со стандартной цилиндрической формой. Кроме этого применяется дополнительное структурирование диаграммы направленности в вертикальной плоскости за счет мультифокусной геометрии линзы: в вертикальном направлении линза разделена на три сектора, каждый из которых независимо собирает излучение на один и тот же чувствительный элемент.

Более подробно остановлюсь на строении той части извещателя , которую большинство электромонтеров и называют линзой. Это кусок полиэтилена, на котором выдавлены различного размера прямоугольники, внутри которых видны некие концентрические окружности, или их части. В большинстве случаев в верхней части мы видим около 12-15 вертикально вытянутых прямоугольников, в средней части 5-6 более похожих на квадраты прямоугольников, и в нижней обычно 3 практически квадратных прямоугольника. Необходимо правильно осознавать, что каждый из этих прямоугольников является линзой Френеля, таким образом, мы имеем некую матрицу из линз. Для того, чтобы различить нарушителя на краю зоны обнаружения, а это обычно 10- 12 метров ее необходимо разбить на необходимое нам количество элементарных зон, что и делает верхний набор прямоугольников. Количество элементарных зон будет соответствовать количеству прямоугольников. Естественно, что в средней части зоны обнаружения извещателя , разбивать на такое количество элементарных зон уже не нужно, и их количество уже сокращается до 5-6, а в ближней зоне – до 3. При рассмотрении матрицы из линз обратите внимание на важную особенность – вертикальные стороны прямоугольников в разных ярусах всегда сдвинуты по отношению друг к другу. Это сделано специально для возможности обнаружить нарушителя в самом плохом для извещателя движении «на извещатель ». Даже если, нарушитель случайно попал точно на средину элементарной чувствительной зоны и движется прямо на извещатель , то в другом ярусе он не сможет так же попасть в середину элементарной зоны и будет ею обнаружен. При размещении извещателя обязательно необходимо учитывать, что максимум его обнаружительной способности именно при движении нарушителя поперек чувствительных зон.

Весьма актуальной является проблема противодействия физическому экранированию извещателя , которое сводится к установке перед ним экрана, перекрывающего его «поле зрения» (так называемое «маскирование»). Технические средства противодействия маскированию составляют систему антимаскирования извещателя . Некоторые извещатели оснащаются встроенными ИК- светодиодами. В случае, если в зоне обнаружения извещателя , а следовательно в зоне действия светодиодов, возникает преграда, то отражение излучения светодиодов от преграды воспринимается извещателем как сигнал тревоги. Более того, периодически (в существующих моделях - один раз в 5 часов) происходит самотестирование извещателя на предмет наличия отраженного излучения ИК-светодиодов . В том случае, если при самотестировании на выходе электрической схемы не появится необходимый сигнал, то срабатывает схема генерации сигнала тревоги. Извещатели с функциями антимаскирования и самотестирования устанавливаются на наиболее ответственных объектах, в частности там, где возможно противодействие работе системы охраны.

Еще один путь повышения помехоустойчивости извещателя - это применение квадратичного чувствительного пироэлемента совместно с использованием микропроцессорной обработки сигнала. Разные фирмы решают проблему создания квадратичного элемента различным образом. Например фирма «OPTEX» применяет два обычных сдвоенных пироэлемента , расположенных рядом. Основная задача системы - выделить и «отсеять» события, вызванные одновременной засветкой обоих пироэлементов (например свет фар) или электрической помехой.

Достаточно много фирм применяют специальную конструкцию счетверенного пироприемника , где четыре чувствительных элемента расположены в одном корпусе. При этом встречно включены пироэлементы , расположенные как в горизонтальной плоскости, так и в вертикальной. Такой извещатель не будет реагировать на мелких животных (мыши, крысы), которые зачастую бывают в складских помещениях и являются одной из причин ложных срабатываний (рис. 8). Использование разнополярного подключения чувствительных элементов в таком извещателе делает невозможным «шумовое» ложное срабатывание.

Фирма «ADEMCO» настолько уверена в совершенстве разработанного ею квадратичного извещателя , что объявила о выплате премии, если обладатель извещателя зафиксирует его ложное срабатывание.

Еще одной мерой предосторожности является применение проводящих пленочных покрытий, наносимых на внутреннюю поверхность входного окна для противодействия радиочастотным помехам.

Эффективным методом повышения помехоустойчивости извещателей является применение так называемой «двойной технологии», которая заключается в использовании комбинированного извещателя , реализующего пассивный инфракрасный и активный радиоволновой (иногда - ультразвуковой) принципы действия. Такие извещатели будут рассмотрены в следующих лекциях.


Рис. 8. Работа многоканальной системы селекции шумовых импульсов на примере работы квадратичного охранного пассивного ИК-извещателя .

В силу принципа обнаружения, для таких извещателей весьма сложно обнаружить нарушителя, если окружающая температура приближается к температуре человеческого тела. В таких случаях извещатель попросту слепнет, а для нашего южного региона температура 35-40 градусов летом вовсе не является редкостью, тем более в закрытых не кондиционируемых помещениях с недостаточно теплоизолированными крышей и стенами. Для борьбы с этой проблемой придумана термокомпенсация . Суть ее работы заключается в том, что при приближении температуры в помещении к критической (37 градусов по Цельсию) извещатель скачкообразно увеличивает чувствительность (обычно на порядок). Конечно это снижает его помехозащищенность, но позволяет обнаружить нарушителя и в этих экстремальных условиях. При понижении температуры извещатель возвращает чувствительность в норму.

Мы рассмотрели основы работы и конструкцию пассивных инфракрасных охранных извещателей . В целом все конструктивные ухищрения, применяемые теми или иными фирмами, имеют одну цель - уменьшить вероятность ложного срабатывания извещателя , поскольку ложное срабатывание ведет к неоправданным затратам на реагирование по тревоге, а также влечет моральный ущерб для владельца охраняемого имущества.

Извещатели постоянно совершенствуются. На современном этапе основными направлениями совершенствования извещателей является повышение их чувствительности, уменьшение числа ложных срабатываний, дифференциация подвижных объектов по признаку санкционированного или несанкционированного пребывания в зоне обнаружения.

Как источник электрического сигнала, каждый чувствительный пироэлемент является также источником случайных шумовых сигналов. Поэтому актуальной является задача минимизации флуктуационных помех, решаемая схемотехническим путем. Используются разные методы борьбы с шумами.

Во-первых, в извещателе устанавливаются электронные дискриминаторы входного сигнала по верхнему и нижнему уровню, что минимизирует частоту появления помехи (рис. 9).


Рис. 9. Пороговая система двухстороннего ограничения уровня шумового сигнала охранного пассивного ИК-извещателя .

Во-вторых, применяется режим синхронного учета импульсов, поступающих по обоим оптическим каналам. Причем схема составляется таким образом, что полезный оптический сигнал на входе приводит к появлению положительного электрического импульса по одному каналу и отрицательного по другому. На выходе применяется схема вычитания. Если источником сигнала является шумовой электрический сигнал - он будет идентичен для двух каналов и на выходе результирующий сигнал будет отсутствовать. Если источником сигнала является оптический сигнал, то выходной сигнал будет суммироваться.

В третьих , применяется метод счета импульсов. Сущность этого метода состоит в том, что одиночный сигнал регистрации объекта не приводит к формированию сигнала тревоги, а устанавливает извещатель в так называемое «предтревожное состояние». Если в течении определенного времени (на практике это - 20 секунд) повторно не поступит сигнал регистрации объекта, происходит сброс предтревожного состояния извещателя (рис. 10). Пользоваться этим методом необходимо осторожно, и применять его только тогда, когда это оправдано. Необходимо помнить, что шанса зафиксировать второй импульс у извещателя может и не быть, и он буде мирно почивать прикрытый картонной коробкой.


Рис. 10. Работа системы счетчика импульсов.

Замечательное свойство формировать зону обнаружения матрицей из линз Френеля позволило производителям создать унифицированную конструкцию извещателя , а изменять его свойства путем замены матрицы. Таким образом один и тот же извещатель можно сделать объемным, можно создать зону «длинный луч» - видит далеко, но узко, можно создать извещатель – «штору», при помощи которого отсекать при помощи зоны обнаружения, похожей на штору необходимые нам части объекта.

Как правило все извещатели требуют подключения электрического питания 12 В постоянного тока. Ток потребления типового извещателя находится в пределах 15 - 40 мА. Сигнал тревоги формируется и передается на охранную централь посредством выходного реле с нормально замкнутыми контактами.

Применение вместо обычных реле твердотельных позволило так же сократить энергопотребление. Напомню, что эти извещатели пассивны, что так же позволяет иметь минимальный ток потребления. Как и большинство охранных извещателей , пассивные инфракрасные извещатели являются восстанавливаемыми, т.е. при обнаружении нарушителя он перейдет в состояние «тревога», при отсутствии дальнейшей регистрации движения он восстановится в состояние «норма». Обычно, для удобства обслуживания в извещателе встроен светодиод красного цвета, который сигнализирует о состоянии «тревога», но может передавать и иные дополнительные сообщения.

Для нормального размещения зоны обнаружения в пространстве необходимо учитывать рекомендуемую производителем высоту установки извещателя , которая обычно составляет 2,2- 2,5 метров для настенного исполнения. Так же напомню, что не допускается переориентирование извещателя (боком, вверх ногами).

При выборе извещателя необходимо помнить, что температурные диапазоны у них разные, и если Вы установите извещатель , работающий до 0 градусов в не отапливаемом помещении, то можно ожидать проблемы в эксплуатации зимой при морозах.

Промышленностью выпускаются извещатели для установки в помещении, а также на открытых площадках; последние имеют соответствующее климатическое исполнение. Типовой срок службы пассивных инфракрасных извещателей - 5 - 6 лет.

Примеры извещателей

С зоной обнаружения типа «длинный луч»: Астра-5 исп. В, Фотон-10А, Фотон-15А, Фотон-16.

С зоной обнаружения типа «штора»: Астра-5 исп. Б, Астра-531 исп. ИК, Икар-Ш , Икар-5Б, Фотон-10Б, Фотон-10БМ, Фотон-15Б, Фотон-16Б, Фотон-20Б, Фотон-22Б, Фотон-Ш , Фотон-Ш-1, Фотон-Ш2.

С объемной зоной обнаружения: Астра-5 исп. А, Астра-5 исп. АМ, Астра-511, Астра-512, Астра-7 исп. А, Астра-7 исп. Б, Фотон-9, Фотон-9М, Фотон-10, Фотон-10М, Фотон-10М-01, Фотон-12, Фотон-12-1, Фотон-15, Фотон-16, Фотон-17, Фотон-19, Фотон-20, Фотон-21, Фотон-22, Икар-1А, Икар-2/1, Икар-5А, Икар-7/1.

Активные оптико-электронные извещатели .

Линейные оптико-электронные извещатели (активные ИК извещатели ), как правило, имеют двухблочную конструкцию и состоят из блока излучателя (БИ) и блока фотоприемника (БФ), образующих оптическую систему. Излучатель формирует поток инфракрасного излучения (инфракрасный луч) с заданными характеристиками, который попадает на приемник. Появление в зоне обнаружения извещателя оптически непрозрачного объекта вызывает прерывание ИК луча (или снижение его мощности), попадающего в приемник, который анализирует величину и длительность этого прерывания и в соответствии с заданным алгоритмом формирует извещение о тревоге путем изменения сопротивления контактов, подключаемых к ШС. Также встречаются извещатели , имеющие одноблочную конструкцию, оптическая система которых состоит из излучателя и фотоприемника, объединенных в одном корпусе, а также светоотражателя (катафота ). Входные окна БИ и БФ обычно закрыты специальными фильтрами (иногда эти фильтры выполнены одним целым с крышкой корпуса извещателя ). Схема активного ИК извещателя представлена на рисунке 11.

Достоинством активных ИК извещателей является то, что их обнаружительная способность не зависит от характеристик теплового излучения человека (нарушителя). Также они нечувствительны к изменению характеристик теплового излучения окружающих объектов (фона) и возникающим тепловым помехам, что очень актуально при эксплуатации на открытых площадках.

Рисунок 11 - Схема активного ИК извещателя

К недостаткам активных ИК извещателей можно отнести их способность формировать только линейную зону обнаружения, что обуславливает узкую область применения. Отчасти эта проблема может быть решена путем организации поверхностной зоны обнаружения за счет применения извещателей , формирующих несколько ИК лучей, или построения ИК барьера из нескольких извещателей . Но при этом размеры зоны обнаружения для первого варианта будут небольшими, а второй вариант потребует увеличения финансовых затрат. К недостаткам можно отнести и чувствительность к оптическим засветкам.

В последнее время некоторыми фирмами-изготовителями предпринимаются попытки создания активного охранного извещателя с применением лазера ИК диапазона. Так, японская фирма «Optex » недавно начала выпуск извещателя , использующего принцип сканирования окружающего пространства лазерным лучом.

Основные функциональные характеристики активных ИК извещателей и их влияние на применение и тактику охраны

Активные ИК извещатели формируют линейную зону обнаружения. Их можно применять для организации первого рубежа охраны объектов (блокировка протяженных инженерных ограждений (заборов), окон или дверей снаружи здания, ворот, вентиляционных шахт и каналов и т.п.). Т.к. активные инфракрасные извещатели формируют линейную зону обнаружения, на их применение будет оказывать влияние форма охраняемого объекта, зависящая от особенностей ландшафта и самого объекта. Охраняемые объекты должны быть прямолинейными, в противном случае, объект разбивается на несколько прямолинейных участков, для блокировки которых используется отдельный извещатель (см. рисунки 12, 13).


Рисунок 12 - Неправильное использование активного ИК извещателя

На рисунке 12 показано неправильное использование активного ИК извещателя . В зонах А и Б возможно проникновение нарушителя через охраняемое ограждение. При этом в зоне Б зоны обнаружения извещателя находится за пределами охраняемого объекта, где есть высокая вероятность ее случайного перекрытия (качающиеся ветки деревьев, действия случайных прохожих и т.п.), что приведет к формированию ложного извещения о тревоге.

Рисунок 13 - Схема охраны объекта сложной формы

На рисунке 13 показана примерная схема охраны объекта сложной формы при помощи нескольких извещателей . Разбивка объекта на участки должна быть произведена таким образом, чтобы нарушитель не смог проникнуть на объект, не перекрыв ИК луча, т.е. максимальное расстояние между полотном ограждения и ИК лучом (воображаемой линией между БИ и БФ) должно быть меньше габаритов человека (примерно 300 – 350 мм).

Основными функциональными характеристиками активного ИК извещателя являются максимальная рабочая дальность действия, коэффициент запаса, чувствительность и помехозащищенность.

Максимальная рабочая дальность действия – максимально возможное расстояние, на которое могут быть разнесены излучатель и приемник извещателя при условии его соответствия требованиям национального стандарта.

Коэффициентом запаса называется максимальное значение уменьшения потока инфракрасной энергии, не приводящее к формированию извещения о тревоге. Этот коэффициент характеризует устойчивость извещателя к воздействию метеорологических факторов (дождь, снегопад, туман). Минимально допустимые значения коэффициента запаса зависят от рабочей дальности действия и приведены в национальном стандарте. Т.к. в помещениях не бывает атмосферных осадков, требования к коэффициенту запаса извещателей , предназначенных для эксплуатации в помещении, значительно ниже аналогичных требований для извещателей , предназначенных для эксплуатации на открытом воздухе.

Конкретные значения максимальной рабочей дальности действия и коэффициента запаса для каждой модели извещателя устанавливает предприятие-изготовитель.

Для обеспечения возможности применения на различных объектах большинство современных активных ИК извещателей имеет возможность регулировки дальности действия. Как правило, регулировка дискретна, каждое ее значение соответствует определенному диапазону дальности действия. Не допускается эксплуатировать извещатель при несоответствии фактической дальности действия установленному при регулировке диапазону. В случае если фактическая дальность превышает установленную, коэффициент запаса может оказаться недостаточным, что при наличии атмосферных осадков (интенсивный снег, дождь, плотный туман) может привести к нарушению работоспособности извещателя (проявляющемуся в виде формирования ложного извещения о тревоге и невозможности постановки на охрану). Если фактическая дальность ниже установленной мощность ИК излучения, попадающего на приемник, будет избыточной, что в некоторых случаях может привести к пропуску нарушителя. Избыточной мощностью сигнала обусловлено и наличие у активных ИК извещателей минимальной дальности действия. Расстояние между БИ и БФ не должно быть меньше значения, указанного в эксплуатационной документации, прилагаемой к извещателю .

Чувствительностью активного ИК извещателя называется длительность прерывания инфракрасного луча, при превышении которой извещатель должен формировать извещение о тревоге. Минимально допустимое значение чувствительности для извещателей , эксплуатируемых на открытых площадках, регламентировано национальным стандартом и составляет 50 мс.

Эта величина определена с учетом антропометрических характеристик человека и соответствует пересечению нарушителем зоны обнаружения извещателя бегом с максимальной скоростью. В современных извещателях предусмотрена дискретная регулировка чувствительности до значения 400 – 500 мс.

Устанавливать значение чувствительности рекомендуется с учетом наиболее вероятного времени нахождения нарушителя в зоне обнаружения, которое зависит от его размеров и скорости перемещения. Например, если извещатель установлен на открытом пространстве, где нарушитель будет иметь возможность разбежаться и пересечь зону с высокой скоростью, следует устанавливать высокую чувствительность (50 мс). В случае отсутствия у нарушителя возможности для разбега и перемещения с высокой скоростью (например, при блокировке узкого пространства между двумя заборами) значение чувствительности можно установить в диапазоне 100 – 200 мс. Если нарушитель будет вынужден находиться в ЗО достаточно продолжительное время, например, при преодолении блокируемого участка ползком или перелезании ограждения (забора), значение чувствительности можно установить в диапазоне 400 - 500 мс. Корректность выбора значения чувствительности необходимо проконтролировать после установки и настройки извещателя на объекте совершением тестовых пересечений зоны наиболее вероятными способами и с максимально возможной скоростью. После каждого пересечения зоны обнаружения извещатель должен формировать извещение о тревоге. За исключением обоснованных случаев, не рекомендуется устанавливать максимально высокую чувствительность (50 мс), т.к. это снижает помехозащищенность извещателя .

Помехозащищенностью называется длительность прерывания инфракрасного луча, при отсутствии превышения которой извещатель не формирует извещение о тревоге. Минимально допустимое значение помехозащищенности для извещателей , эксплуатируемых на открытых площадках, регламентировано национальным стандартом и составляет 35 мс. Эта величина определена с учетом размеров и скорости перемещения наиболее вероятных помех, таких как падающие листья, пролетающие птицы и т.п.

В современных отечественных извещателях изменение помехозащищенности происходит автоматически одновременно с изменением чувствительности в процессе ее регулировки. Повышению помехоустойчивости извещателя способствует применение в нем сдвоенного (синхронизированного) ИК луча. Соотношения между чувствительностью и помехозащищенностью для современных отечественных активных ИК извещателей приведены в таблице 1.

Таблица 1

Параметр

Значение

Чувствительность, мс

Помехозащищенность, мс

Влияние внешних факторов на работу активных ИК извещателей и рекомендации по его уменьшению

1) Температурный фактор . Температура окружающей среды оказывает негативное влияние на работоспособность извещателя , если ее значение превышает допустимые значения рабочей температуры, установленные для данного извещателя . Для уменьшения вероятности перегрева извещателя следует по возможности избегать установки его в местах, где он будет подвергаться длительному воздействию прямых солнечных лучей, а также использовать защитные козырьки. Для эксплуатации в районах, где в зимнее время часто наблюдаются очень низкие температуры (минус 40 °С и ниже), необходимо выбирать извещатели , имеющие встроенный автоматический подогрев платы и оптики. Нижнее значение диапазона рабочих температур для современных отечественных извещателей равняется минус 40 °С , при наличии встроенного обогрева оно снижается до минус 55 °С. Если температура воздуха опустилась ниже допустимых значений извещателя , необходимо учесть, что он может не обнаруживать нарушителя, целесообразно организовать охрану объекта методом патрулирования.

2) Оптические засветки . Причиной высокой освещенности может быть как солнце, так и источники искусственного освещения. Наличие на входном окне БФ извещателя освещенности, фактическое значение которой превышает нормы, установленные в национальном стандарте (более 20000 лк от естественного освещения и источников света, питающихся от источников постоянного тока, и 1000 лк от источников света (в т.ч. люминесцентных ламп), питающихся от сети переменного тока), может являться причиной ложных срабатываний или пропуска нарушителя. Для исключения влияния данного фактора на работу извещателя он должен быть установлен таким образом, чтобы на входное окно БФ не попадали прямые солнечные лучи (это особенно актуально во время заката или восхода, когда неэффективны различные защитные козырьки) и излучение от мощных осветительных приборов (прожекторов, мощных люминесцентных ламп и пр.). Большинство активных ИК извещателей , включенных на сегодняшний день в «Список…», обладают устойчивостью к естественному освещению величиной до 30000 лк.

3) Атмосферные осадки . Атмосферные осадки оказывают негативное влияние на коэффициент запаса извещателя вследствие ослабления излучения из-за рассеивания его каплями воды или снежинками. Также они могут быть причиной появления влаги в корпусах блоков извещателя , что может вызвать потерю его работоспособности. В зимнее время возможно также обледенение входных окон блоков извещателя . Коэффициент запаса современных извещателей , как правило, позволяет им исправно функционировать при наличии атмосферных осадков, но в случае их особой интенсивности может возникнуть нарушение работоспособности извещателя (проявляющееся в виде постоянного формирования извещения о тревоге и невозможности постановки на охрану). В этом случае следует организовать охрану объекта методом патрулирования. Для уменьшения вредного воздействия атмосферных осадков можно использовать защитные козырьки, следует чаще проводить техническое обслуживание (очистку входных окон от льда и снега) извещателя . Необходимо применять извещатели с более высокой степенью защиты оболочки (не ниже IP54 по ГОСТ 14254), тщательно герметизировать вводные технологические отверстия в корпусах блоков при монтаже. В случае установки извещателя на небольшой высоте от земли или иной поверхности (например, непосредственно над полотном ограждения) постепенно увеличивающийся слой снега (сугроб) может перекрыть зону обнаружения извещателя , что вызовет постоянное формирование ложного извещения о тревоге. Зона обнаружения извещателя также может быть перекрыта образовавшимися сосульками в случае ее расположения под какими-либо выступающими конструкциями и их элементами. Для предотвращения нарушения нормальной работы извещателя необходимо расчищать снег, скапливающийся в зоне обнаружения, своевременно удалять образующиеся сосульки. В случае установки извещателя вдоль верхнего края ограждения рекомендуется смещать его от оси ограждения внутрь объекта.

4) Электромагнитные помехи (ЭМП). Источником ЭМП, способных повлиять на работу извещателя , могут быть как работающее электрооборудование большой мощности, так и атмосферные электрические разряды (гроза). Для эксплуатации на открытом воздухе следует применять извещатели , имеющие устойчивость к ЭМП по ГОСТ Р 50009 (электростатический разряд, электромагнитное поле, электрические импульсы в цепи электропитания) не ниже 3 степени. При установке извещателей на открытом воздухе приходится прокладывать протяженные соединительные линии, подверженные воздействию ЭМП. Для ослабления влияния ЭМП на работу извещателя необходимо все соединительные линии прокладывать в металлорукавах (стальных трубах) и использовать заземление.

5) Изменение положения в пространстве конструкций, на которых закреплены блоки извещателя . Эти изменения могут иметь как естественную, так и техногенную природу. Причиной их могут являться, например, вибрация вследствие работы каких-либо механизмов или движения большегрузного транспорта, сезонные подвижки грунта, ремонтные и другие работы, проводимые в непосредственной близости от места установки извещателя . Последствиями их могут быть ложные срабатывания и снижение коэффициента запаса. Для предотвращения влияния данного фактора на работу извещателя необходимо по возможности устанавливать его на основаниях, не подверженных вибрации, деформации, имеющих устойчивый фундамент (несущие стены капитальных строений и т.п.).

6) Наличие в воздухе твердых мелкодисперсных частиц . Эти частицы могут иметь как естественное (пыль, пыльца растений), так и техногенное (пыль, копоть и пр.) происхождение. Их оседание на входном окне извещателя приводит к уменьшению коэффициента запаса. Для борьбы с этим явлением на объектах с повышенным содержанием пыли или копоти в воздухе следует чаще проводить техническое обслуживание извещателя . Эксплуатационные особенности активных ИК извещателей .

Электропитание активных извещателей , как правило, допустимо осуществлять от источника постоянного тока с номинальным напряжением 12 или 24 В. Для электропитания извещателей , эксплуатируемых на открытых площадках (особенно при большой протяженности шлейфов питания), рекомендуется использовать источники с номинальным напряжением 24 В. Электропитание встроенного подогрева (при его наличии), как правило, осуществляется от отдельного источника, подключаемого к специально предназначенным для этой цели клеммам. Выходная мощность источников должна соответствовать нагрузке.

Особенности организации ИК барьера

Интервал между извещателями следует выбирать таким образом, чтобы у нарушителя отсутствовала возможность пролезть между ИК лучами, не перекрыв их. Для применения на открытом воздухе можно рекомендовать интервал около 350 мм. Для организации ИК барьера можно применять извещатели , имеющие несколько рабочих частот. Это необходимо для исключения влияния излучения одного извещателя на работу соседнего. В случае необходимости использования в барьере извещателей в количестве, превышающем количество рабочих частот, их нужно установить таким образом, чтобы ИК лучи извещателей , работающих на одной частоте, были направлены навстречу друг другу (рисунок 14). Таким же образом можно организовать и двухлучевой барьер из извещателей , имеющих одну рабочую частоту.

Рисунок 14 - Пример барьера ИК извещателей , работающих на одной частоте

При необходимости создания ИК барьера в горизонтальной плоскости извещатели необходимо устанавливать таким образом, чтобы излучения одной рабочей частоты близко расположенных БИ были разнонаправлены и не могли одновременно попадать на входное окно одного БФ (рисунок 15).

Рисунок 15 – Пример ИК барьера в горизонтальной плоскости

Настройка параметров извещателя , необходимых для работы на каждом конкретном объекте, производится либо с помощью переключателей, либо программированием. Процесс программирования параметров изложен в эксплуатационной документации, прилагаемой к извещателю . После установки извещателя на объекте и подключения электропитания необходимо настроить взаимное расположение излучателя и приемника извещателя . Грубая настройка проводится визуально путем приблизительного совмещения их оптических осей или по показаниям индикатора ИК излучения (при наличии этого индикатора). В некоторых моделях извещателей (например, ИО209-32 «СПЭК-1115») для этой цели предусмотрен специальный оптический визир. После завершения грубой настройки необходимо произвести юстировку (точную настройку) блоков. Осуществляется она путем плавного поворота блока в разных направлениях на небольшой угол в горизонтальной и вертикальной плоскостях при помощи предусмотренных конструкцией извещателя юстировочных приспособлений (винтов или маховиков). Процесс юстировки контролируется в зависимости от конкретной модели извещателя либо по показаниям вольтметра, подсоединяемого к специальному разъему, либо по изменению встроенной световой индикации. Юстировка считается завершенной при максимальных показаниях вольтметра либо при наличии световой индикации, вид которой указан в эксплуатационной документации. ВНИМАНИЕ. Юстировка блоков извещателя обеспечивает наличие на входном окне БФ необходимой мощности ИК излучения, а также достижение максимального коэффициента запаса и является необходимой и обязательной процедурой, даже в том случае, если после грубой настройки извещатель переходит в дежурный режим и способен формировать извещение о тревоге при пересечении зоне обнаружения.

Дистанционный контроль функционирования предназначен для проверки работоспособности извещателя с пульта централизованного наблюдения. Осуществляется путем кратковременной коммутации специально предназначенного для этой цели выхода и положительного выхода электропитания. В результате происходит кратковременное прерывание излучения БИ, после чего извещатель должен выдать извещение о тревоге. Данная функция требует прокладки дополнительного провода, но может оказаться полезной при охране периметров большой протяженности или затрудненном доступе к извещателю (например, в зимнее время). В случае установки извещателя таким образом, что его зона обнаружения направлена вдоль протяженной поверхности (полотна ограждения, стены и т.п ), может проявиться эффект переотражения , заключающийся в том, что на входное окно БФ помимо прямого ИК излучения будет попадать и переотраженное (рисунок 16). В результате, при достаточной мощности переотраженного излучения извещатель не будет формировать извещения о тревоге при перекрытии основного. Данный эффект может проявляться и при атмосферных осадках небольшой интенсивности, когда ИК излучение будет отражаться от снежинок, капель воды.


Рисунок 16 – Эффект переотражения

Для исключения отрицательного влияния эффекта переотражения в современных отечественных извещателях предусмотрена возможность включения т.н. «интеллектуального режима обработки сигнала», суть которого заключается в том, что извещатель формирует извещение о тревоге при уменьшении мощности ИК излучения на входном окне БФ примерно на 70 %.

На отечественном рынке активные ИК извещатели в настоящее время представлены в основном продукцией российской фирмы ЗАО «СПЭК», (г. Санкт-Петербург), японских фирм «Optex » и «Aleph », немецкой «Bosch » и некоторых других.

На сегодняшний день полностью соответствуют требованиям отечественных национальных стандартов и ЕТТ только извещатели производства ЗАО «СПЭК». Ниже приведены рекомендации по их выбору для охраны различных объектов с учетом основных особенностей и характеристик. Следует отметить, что конструктивные особенности активных ИК извещателей , особенно предназначенных для эксплуатации на открытых площадках, обусловливают их высокую стоимость. Поэтому применение большинства из них будет наиболее целесообразно на достаточно важных объектах.

Выбор однолучевых извещателей (или со сдвоенным синхронизированным ИК лучом), как правило, осуществляется с учетом максимальной рабочей дальности действия. Нецелесообразно применять извещатель с максимальной рабочей дальностью действия, значительно превышающей фактические размеры охраняемого объекта. Для эксплуатации в районах, где в зимнее время часто наблюдаются очень низкие температуры (минус 40 °С и ниже), необходимо выбирать извещатели , имеющие встроенный автоматический подогрев платы и оптики. Монтаж, подключение, настройка и эксплуатация извещателей должны проводиться в строгом соответствии с прилагаемой эксплуатационной документацией. Некоторые извещатели можно эксплуатировать также и в помещениях. В этом случае их максимальная рабочая дальность действия увеличивается вследствие более низких требований к коэффициенту запаса, что должно быть отражено в эксплуатационной документации. Каждому активному ИК извещателю , включенному в список, присвоено условное обозначение вида «ИО209-ХХ/У», где «И» означает вид продукции (извещатель ), «О» – область применения (охранный), «2» – характеристику зоны обнаружения (линейная), «09» – принцип действия (оптико-электронный), «ХХ» - порядковый номер разработки, зарегистрированный в установленном порядке, через косую дробь «У» – порядковый номер конструктивной модификации (при наличии нескольких модификаций).

Рисунок 17 - ИО209-16 «СПЭК-7»

ИО209-16 «СПЭК-7». Многолучевой извещатель выпускается в двух исполнениях (модификациях) ИО209-16/1 «СПЭК-7-2» (формирует 2 луча с интервалом 350 мм) и ИО209-16/2 «СПЭК-7-6» (формирует 6 лучей с интервалом 70 мм). Излучатели и фотоприемники смонтированы в единых корпусах (т.н. колонках КИ и КФ). Извещатель рекомендуется использовать для охраны проемов ворот, калиток, блокирования доступа к окнам и дверям здания извне. При этом ИО209-16/2 «СПЭК-7-6» способен обнаруживать протянутую через зону обнаружения руку. Оба исполнения извещателя имеют рабочую дальность действия от 0,4 до 15 м (на открытом воздухе), 4 значения чувствительности. Имеется возможность использования до 5 извещателей в ИК барьере. КИ при этом объединяются линией синхронизации. КФ могут быть как синхронизированы, так и работать каждый со своими собственными настройками. Максимальная длина линии синхронизации между соседними КИ или КФ - не более 10 м. Синхронизация позволяет экономить средства за счет прокладки меньшего количества ШС. Имеется возможность настройки количества ИК лучей, одновременное пересечение которых необходимо для формирования извещения о тревоге, что повышает устойчивость извещателя к пересечению зоны обнаружения мелкими животными, птицами и т.п. Извещатель можно применять и в помещениях.

ИО209-17 «СПЭК-8» Извещатель имеет сдвоенный в горизонтальной плоскости ИК луч, 4 рабочих частоты, 4 значения чувствительности, встроенный подогрев. Дальность действия извещателя - от 35 до 300 м. Извещатель рекомендуется применять для блокировки прямолинейных участков периметров большой протяженности, в т.ч. в районах с холодным климатом.

Рисунок 18 - ИО209-17 «СПЭК-8»

Рисунок 19 - ИО209-22 «СПЭК-11»

ИО209-22 «СПЭК-11» Максимальная рабочая дальность действия - 150 м (на открытом воздухе). Извещатель имеет 1 ИК луч, 2 рабочих частоты, 2 значения чувствительности. Данный извещатель предназначен для применения во взрывоопасных зонах класса 1 и 2 помещений и наружных установок по ГОСТ Р 52350.14 (классы B-Ia , B-Iб , B-Iг по ПУЭ) и другим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных зонах. Взрывозащищенное исполнение вида «взрывонепроницаемая оболочка». Маркировка взрывозащиты 1 Ex d IIB T5 X. Извещатель можно применять и в помещениях. Применение на иных объектах нецелесообразно вследствие высокой стоимости.

ИО209-29 «СПЭК-1112» Извещатель с двумя горизонтально расположенными несинхронизированными ИК лучами. Благодаря наличию двух выходных реле, извещатель позволяет определять направление пересечения ЗО нарушителем (при пересечении лучей в одном направлении размыкается одно реле, при пересечении в другом направлении – второе). Рабочая дальность действия - от 10 до 150 м. Извещатель имеет встроенный обогрев, 4 рабочих частоты, 2 значения чувствительности. Рекомендуется для охраны различных объектов в т.ч. в районах с холодным климатом.

Рисунок 20 - ИО209-29 «СПЭК-1113»

ИО209-29 «СПЭК-1113» Извещатель имеет одноблочную конструкцию со светоотражателем, 5 рабочих частот, 4 значения чувствительности. Рабочая дальность действия - от 5 до 10 м (на открытом воздухе). Встроенный обогрев отсутствует. Рекомендуется применять для блокировки проемов ворот, калиток, выходов воздуховодов, вентиляционных шахт и других объектов, имеющих небольшие размеры. Благодаря относительно невысокой стоимости, извещатель целесообразно будет применять в т.ч. для охраны обычных объектов, объектов ИЖС и т.п. Извещатель можно применять в помещениях.

Рисунок 21 - ИО209-32 «СПЭК-1115»

ИО209-32 «СПЭК-1115» Выпускается в четырех исполнениях, отличающихся максимальной рабочей дальностью действия и наличием встроенного подогрева:

а) ИО209-32/1 «СПЭК-1115» имеет дальность действия от 1 до 75 м;

б) ИО209-32/2 «СПЭК-1115М» имеет дальность действия от 1 до 75 м и встроенный подогрев;

в) ИО209-32/3 «СПЭК-1115-100» имеет дальность действия от 1 до 100 м;

г) ИО209-32/4 «СПЭК-1115М-100» имеет дальность действия от 1 до 100 м и встроенный подогрев.

Извещатель имеет сдвоенный в вертикальной плоскости ИК луч, 4 рабочих частоты, 4 значения чувствительности. Рекомендуется для охраны различных объектов, в т.ч. в районах с холодным климатом (для исполнений с литерой «М»).

ИО209-29 «СПЭК-1117» Данный извещатель является упрощенной модификацией извещателя «СПЭК-1115» и имеет более низкую стоимость, благодаря чему его целесообразно будет применять в т.ч. и для охраны обычных объектов, объектов ИЖС и т.п. Извещатель имеет сдвоенный в вертикальной плоскости ИК луч, 1 рабочую частоту, 2 значения чувствительности.

Импортные извещатели , присутствующие на отечественном рынке ТСО, часто не соответствуют действующему национальному стандарту и ЕТТ в части устойчивости к воздействию низких температур окружающей среды и коммутационных параметров выходных реле. Также зарубежные производители в технических характеристиках своих извещателей не приводят значение коэффициента запаса.

Перечень нормативно-технической документации, требования которой необходимо учитывать при изучении данной темы.

1. Р 78.36.026-2012 Рекомендации. Использование технических средств обнаружения, основанных на различных физических принципах, для охраны огражденных территорий и открытых площадок.

2. Р 78.36.028-2012 Рекомендации. Технические средства обнаружения проникновения и угроз различных видов. Особенности выбора, эксплуатации и применения в зависимости от степени важности и опасности объектов.

3. Р 78.36.013-2002 – «Рекомендации. Ложные срабатывания технических средств охраны и методы борьбы с ними».

4. Р 78.36.036-2013 «Методическое пособие по выбору и применению пассивных оптико-электронных инфракрасных извещателей ».

5. Р 78.36.031-2013 «Обследование объектов, квартир и МХИГ, принимаемых под центра лизованную охрану».

6. Р 78.36.022-2012 «Методическое пособие по применению радиоволновых и комбинированных извещателей с целью повышения обнаруживающей способности и помехозащищенности».

7. ГОСТ Р 50658-94 Системы тревожной сигнализации. Часть 2. Требования к системам охранной сигнализации. Раздел 4. Ультразвуковые доплеровские извещатели для закрытых помещений.

8. ГОСТ Р 50659-2012 Извещатели радиоволновые доплеровские для закрытых помещений и открытых площадок. Общие технические требования и методы испытаний.

9. ГОСТ Р 54455-2011 (МЭК 62599-1:2010) Система охранной сигнализации. Методы испытаний на устойчивость к внешним воздействующим факторам, модифицированный по отношению к международному стандарту МЭК 62599-1:2010 Системы тревожной сигнализации. Часть 1. Методы испытаний на воздействие окружающей среды.

10. ГОСТ Р 50777-95 Системы тревожной сигнализации. Часть 2. Требования к системам охранной сигнализации. Раздел 6. Пассивные оптико-электронные инфракрасные извещатели для закрытых помещений.

11. ГОСТ Р 51186-98 Извещатели охранные звуковые пассивные для блокировки остекленных конструкций в закрытых помещениях. Общие технические требования.

12. ГОСТ Р 54832-2011 Извещатели охранные точечные магнито-контактные . Общие технические требования.

13. ГОСТ Р 52434-2005 Извещатели охранные оптико-электронные активные. Общие технические требования.

14. ГОСТ 31817.1.1-2012 Системы тревожной сигнализации. Часть 1. Общие требования. Раздел 1. Общие положения.

15. ГОСТ 52435-2005 Технические средства охранной сигнализации. Классификация. Общие технические требования и методы испытаний.

16. ГОСТ Р 52551-2006 Системы охраны и безопасности. Термины и определения.

17. ГОСТ Р 52650-2006 Извещатели охранные комбинированные радиоволновые с пассивными инфракрасными для закрытых помещений. Общие технические требования и методы испытаний.

18. ГОСТ Р 52651-2006 Извещатели охранные линейные радиоволновые для периметров. Общие технические требования и методы испытаний.

19. ГОСТ Р 52933-2008 Извекщатели охранные поверхностные емкостные для помещений. Общие технические требования.

20. ГОСТ Р 53702-2009 Извещатели охранные поверхностные вибрационные для блокировки строительных конструкций закрытых помещений и сейфов.

21. ГОСТ 32321-2013 Извещатели охранные поверхностные ударно-контактные для блокировки остекленных конструкций в закрытых помещениях. Общие технические требования.

22. Список технических средств безопасности, удовлетворяющий «Единым техническим требованиям к системам централизованного наблюдения, предназначенным для применения в подразделениях вневедомственной охраны» и «Единым техническим требованиям к объектовым подсистемам охраны, предназначенным для применения в подразделениях вневедомственной охраны».

23. www.ktso.ru

24. www.guarda.ru

Вопросы для самопроверки.

1. Что является чувствительным элементом в ПИК извещателях ?

2. Для чего зона обнаружения ПИК извещателя разделена на ярусы?

3. Какие основные типы зон обнаружения бывают у ПИК извещателей ?

4. Какого вида зона обнаружения у рассмотренных нами активных инфракрасных извещателей ?

5. Приведите пример активного инфракрасного извещателя .

Для обеспечения охраны жилого дома, административного здания или прочего имущества используются специальные приборы – , охранные. В данной статье речь пойдет об оптико-электронных извещателях, их характеристиках и разновидностях.

Дымовые пожарные датчики

Дымовые извещатели – самые распространенные датчики пожарной сигнализации. Они отличаются быстрой восприимчивостью к продуктам горения и высокой скоростью срабатывания. Дымовые приборы пожарной безопасности подразделяются на ионизационные и оптические.

Ионизационные датчики выделяют безопасное радиоактивное излучение для анализа пробных воздушных масс на наличие дыма.

Дымовые оптико-электронные излучатели – приборы, фиксирующие дым в начальной стадии, посредством просвечивания воздуха в инфракрасном или ультрафиолетовом свете.

Устройство и принцип действия оптических извещателей

Оптико-электронные датчики представляют собой пластиковый корпус, где располагаются светоизлучатель, дымовая камера, фотоприемник и перегородка, служащая для защиты фотоэлемента от прямых инфракрасных или ультрафиолетовых лучей. Также устройство имеет защиту от внешнего света и пыли.

Извещатель пожарный дымовой оптико-электронный точечный испускает излучение в инфракрасном спектре в дымовую камеру и регистрирует его отражение фотодиодом. В «чистой» среде лучи не достигают фотоэлемента, так светоизлучатель и приемный блок находятся под углом друг к другу.

Но как только в камеру попадают дымовые частички, плотность среды увеличивается, инфракрасное излучение рассеивается и попадает на фотоприемник. Так происходит включение сигнализации – самостоятельно активируется тревожный сигнал или с одновременной передачей на пульт слежения.

Оптико-электронные излучатели – это не автономные приборы, они подключаются к шлейфу, ведущему к пульту управления.Имеют низкое энергопотребление.

Виды и область применения

Оптические дымовые пожарные извещатели подразделяются на несколько видов:

  • точечные – имеют небольшой радиус действия. Производят контроль помещения в конкретной зоне, где велика вероятность возгорания;
  • линейные – используются в помещениях больших объемов с высокими потолками. Представляют собой приемник и излучатель, которые монтируются на противоположных стенах помещения;
  • аспирационные — принудительно берут воздушные пробы на анализ посредством лазерного просвечивания;
  • автономные – это те же точечные приборы, работающие на собственном источнике питания, то есть не подключенные к пульту управления.

Оптико-электронные извещатели устанавливаются в жилых, офисных помещениях, на складах, в торговых центрах, производственных помещениях и везде, где находится много электроприборов и оборудования.

Не рекомендуется использование подобных приборов в запыленных, загазованных и загрязненных зонах, так как такая среда может спровоцировать ложные срабатывания. Также дымовые датчики не используются на пожаро- и взрывоопасных объектах. В подобных зонах используются извещатели взрывозащищенные.

Оптический датчик пожарной безопасности ИП 212-45

Ниже представлено описание основных характеристик дымовых оптических извещателей на примере ИП 212-45 (Марко).

Датчик используется для раннего обнаружения возгорания в помещении, сопровождающегося выделение дыма и продуктов горения.

Электропитание и передача тревожного сигнала на пульт управления осуществляется по двухпроводному кабелю. Имеет несколько режимов работы: дежурный, «Пожар», «Тревога».

Прибор не реагирует на открытый огонь, высокую температуру воздуха и влажность. Условия эксплуатации: влажность 95% при температуре +35 градусов; диапазон температуры воздуха от -44 до +55 градусов. Чувствительность 0,05- 0,2 дБ/м. Время срабатывания – 9 сек.

Устройство состоит из датчика дыма и розетки, к которой крепится прибор. Внутри датчика находятся камера анализа воздушных проб, а также электронная система обработки информации.

Оптико-электронные охранные извещатели

Помимо пожарных датчиков безопасности существуют и охранные оптико-электронные извещатели. Они имеют широкую популярность и распространение.

Оптико-электронные охранные извещатели – приборы, обеспечивающие защиту закрытого помещения, территории, посредством контроля и обнаружения в них посторонних лиц и животных. Для охраны уличной огражденной территории используются линейные оптико-электронные датчики.

Действие подобных приборов основывается на оптическом принципе работы, то есть с использование инфракрасных лучей и отражающих линз.

Извещатели охранные оптико-электронные делятся на: активные и пассивные.

Пассивные датчики

Пассивные приборы охранной сигнализации фиксируют перемещение нежелательного объекта на подконтрольной территории с определенной массой и скоростью, отличной от заданного значения.

Применяются для выявления лиц, проникших в помещение через двери, окна, люки. Подобные приборы не реагируют на неподвижные предметы, даже при их высоких температурных показателях.

Пассивные извещатели включают в себя приемник, линзы, электронный блок анализа сигналов. Датчики регистрируют инфракрасное излучение от теплого объекта, которое попадает на линзу Френеля и преобразуется пироприемником в специальный электрический сигнал.

Затем сигнал поступает на усилитель и электронную систему обработки информации. При установлении прибором значений инфракрасного излучения выше заданного, включается тревожный сигнал, который передается на пульт управления.

Пассивные охранные приборы имеют невысокую дальность обнаружения – 10-20 метров. Диапазон обнаруживаемых скоростей начинается с показателя 0,3 м/сек.

Для исключения ложных срабатываний от разнообразных источников излучения, внутри прибора располагаются фильтрационные конструкции («белый» фильтр, «черное» зеркало), блокирующие проникание на пироэлектрический элемент датчика иных оптических излучений.

По типу области обнаружения пассивные датчики подразделяются на: объемные оптико-электронные, поверхностные и линейные.

Достоинствами пассивных датчиков являются фиксирование посторонних объектов даже малого размера (мелких животных); эстетичный внешний вид; простота установки и настройки; высокая чувствительность и скорость обнаружения нарушителя.

Минусами пассивных извещателей является факт обнаружения нарушителя уже после его проникновения внутрь здания; чувствительность к теплым воздушным потокам от сквозняка или обогревателя.

Активные датчики

Активные оптико-электронные извещатели осуществляют линейную зону защиты. Конструкция прибора представляет собой два блока: излучатель и фотоприемника, между которых образуется оптическая область защиты.

Инфракрасный световой датчик посылает сигналы на приемник с заданными параметрами.

Если в рабочей области прибора появляется преграда, то ИК лучи прерываются и не поступают на фотоприемник.

Анализируя длительность прерывания лучей, извещатель формирует сигнал тревоги. Существуют одноблочные приборы, где светоизлучатель с фотоприемником заключены в один корпус.

Приборы не реагируют на тепловое излучение, поэтому применяются на территориях под открытым воздухом. Рабочими особенностями активных охранных датчиков являются.

Оптико-электронные извещатели – это приборы, в которых для обнаружения тревожного события используются оптические устройства и сенсоры различной конструкции. Дальнейшая обработка полученного сигнала осуществляется электронной схемой. Такие устройства широко используются в системах как охранной так и пожарной сигнализации.

Основными причинами их популярности являются:

  • высокая эффективность;
  • возможность формирования различных по конфигурации зон обнаружения;
  • относительно невысокая цена.

Оптическая часть этих извещателей работает в инфракрасном (ИК) диапазоне излучений. Существуют различные варианты исполнения инфракрасных датчиков, различающихся принципом действия, назначением и особенностями применения.

Пассивные.

Используются в системах охранной сигнализации. Их основными преимуществами является экономическая доступность и широкая область применения. Принцип действия основан на анализе разницы ИК излучения между секторами, формируемыми специальными линзами (Френеля).

Приемником инфракрасного потока является пироэлектрический модуль, формирующий электрические импульсы, обрабатываемые электроникой.

Современные извещатели достаточно часто используют микропроцессорную обработку сигнала, что повышает их надежность, эффективность и устойчивость к помехам.

Активные.

Они оценивают изменения интенсивности ИК луча, генерируемого, входящим в их состав передатчиком. Конструктивно приемная и передающая части могут быть размещены в отдельных блоках, устанавливаемых друг против друга. В этом случае контролируется часть пространства, находящаяся между ними.

При моноблочном исполнении для возвращения луча на прибор используется специальный отражатель. Такие извещатели применяются в охранных и пожарных системах.

Достаточно подробно работа таких устройств рассмотрена в материале про линейные датчики, используемые в охранно пожарной сигнализации.

Помимо "классических" проводных устройств, использующих для передачи информации о своем состоянии реле существуют адресные оптико- электронные извещатели. Передавая сигнал приемно-контрольному устройству, они добавляют в информацию свой, уникальный для каждого изделия, код.

За счет этого становится возможность локализация тревожного события с точностью до места установки датчика. Стоимость их, естественно, выше, но в ряде случаев оно того стоит.

Еще одна технология - адресно аналоговая. Она подразумевает передачу оцифрованных данные сканируемого параметра, на основании которых решение о формировании сигнала тревоги принимает приемно-контрольный прибор. Такие извещатели используются, главным образом, в противопожарных системах.

Последнее что стоит отметить - способы передачи сигнала. Их, собственно, два:

  • проводной;
  • радиоканальный.

ОХРАННЫЕ ОПТИКО- ЭЛЕКТРОННЫЕ ИЗВЕЩАТЕЛИ

Принцип действия охранных оптико-электронных устройств изложен в начале этой статьи. Что касается зон обнаружения, то пассивные инфракрасные извещатели позволяют использовать все возможные варианты:

  • объемная;
  • поверхностная (штора);
  • линейная (луч).

Активные работают по последнему (лучевому) принципу.

Все они по своей сути являются датчиками движения, то есть обнаруживают перемещение объекта в охраняемой зоне. Для поверхностных и линейных правильнее будет сказать - пересечение зоны обнаружения. Дополнительно про то как это работает можно посмотреть .

ПОЖАРНЫЕ ОПТИКО-ЭЛЕКТРОННЫЕ ИЗВЕЩАТЕЛИ

Оптико-электронные приборы, используемые в системах пожарной сигнализации и установках автоматического пожаротушения, относятся к дымовым извещателям. По типу зоны обнаружения их подразделяют на:

  • точечные;
  • линейные.

Точечные имеют в своем составе дымовую камеру. Она представляет собой своеобразный лабиринт в начале и конце которого установлены излучатель и фотоприемник. При попадании внутрь дыма происходит рассеяние ИК излучения что фиксируется электронной схемой прибора.

Область применения таких извещателей весьма широка, они устанавливаются В офисах , магазинах, гостиницах и других подобных объектах. По типу типу формирования информационного сигнала они подразделяются на:

  • пороговые;
  • адресные;
  • адресно- аналоговые.

По способу связи с приборами пожарной сигнализации эти извещатели бывают проводными и беспроводными (радиоканальными).

В целом это достаточно универсальные датчики, позволяющие решать различные вопросы обеспечения пожарной безопасности. Несколько неудобно, а иногда экономически нецелесообразно, применять их для установки в помещениях большой площади и (или) большим расстоянием до потолочного перекрытия.

В этом случае в системах пожарной сигнализации используются линейные оптико электронные извещатели. Газовой камеры они не имеют и контролируют оптическую плотность среды за счет анализа параметров инфракрасного луча. Для этих целей требуются приемник и передатчик, то есть такие устройства являются активными.

Общее ограничение на использование оптико электронных пожарных извещателей - помещения с повышенным содержанием пыли. Кроме того, такие устройства могут быть подвержены влиянию электромагнитных помех. Но это во многом зависит от модели датчика.


* * *


© 2014-2019 г.г. Все права защищены.
Материалы сайта имеют исключительно ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.