Устьица у растения: определение, расположение, функции. Значение устьиц в дыхании растений

ЛАБОРАТОРНАЯ РАБОТА № 5

ВОДНЫЙ ОБМЕН. ЛИСТ КАК ОРГАН ТРАНСПИРАЦИИ

Цель работы: изучение важнейших функциональных особенностей листа растений как органа транспирации: строения и количества устьиц на листовой пластинке, механизма открывания и закрывания устьиц, влияния различных веществ на движение устьиц.

ТРАНСПИРАЦИЯ

Биологическое значение транспирации состоит, во-первых, в обеспечении постоянства внутренней температуры листа. Это достигается поглощением тепла водой при ее испарении листьями. Энергия, необходимая для перевода молекулы из жидкой фазы в газообразное состояние без изменения температуры, называется теплотой испарения . Затрата тепла на испарение воды является средством регуляции температуры листьев и предупреждения растений от перегрева.

Во-вторых, транспирация, являясь верхним концевым двигателем, обеспечивает поступление воды и элементов минерального питания в корни. Установлено наличие положительной корреляции между интенсивностью транспирации и поступление воды и ионов. Если с растения удалить листья, то поглощение воды корнями прекращается. В присасывающем действии транспирирующих листьев можно убедиться, если поместить срезанную ветку в пипетку, заполненную водой, и опущенную в чашечку со ртутью. Через некоторое время можно наблюдать поднятие ртути в пипетке, что будет указывать на значительную присасывающую силу листьев.

Таким образом, скорость поступления воды в корни обусловлена интенсивностью транспирации.

В-третьих, транспирация предотвращает возникновение избыточного тургорного давления, что могло бы привести к разрушению клеток растений.

В-четвертых, процесс транспирации находится в тесной связи с фотосинтезом растений, что было отмечено работами К. А.Тимирязева. Усвоение СО 2 листьями растений происходит через устьица, и оно зависит от степени насыщенности листовой ткани водой. Процесс усвоения воды и углекислого газа представляет собой единое и неразрывное целое.

Под интенсивностью транспирации понимают количество испарившейся воды за единицу времени с единицы листовой поверхности. Обычно этот показатель имеет размерность – мг/дм 2 час. Количество воды, испаряемое растениями, достаточно велико, и нередко превышает количество выпавших осадков за вегетационный период. Это превышение компенсируется осеннее-зимними осадками. Так, например, одно растение подсолнечника или кукурузы расходует за лето 200-250 л воды. Растения пшеницы на площади 1 га испаряют за лето около 2 млн литров воды, кукурузы – более 3 млн, а капусты – до 8 млн л. В процессе образования одного килограмма растительной массы расходуется 300 л. Воды.

Устьичная транспирация регулируется степенью открытости устьиц. Строение и распределение их зависит от видовых и экологических особенностей растений. Устьица встречаются на всех наземных частях растений, включая репродуктивные органы и даже тычиночные нити. Наиболее характерны устьица для листьев. Чаще они располагаются на нижней стороне листьев (у мезофитных растений). Однако у ксерофитов они встречаются и на верхней стороне листа.

Среднее число устьиц на 1 мм 2 площади колеблется от 100 до 300. Размер устьиц не превышает 20 микрон в длину и 8-15 микрон в ширину. Общая площадь открытых устьиц составляет 1% поверхности листа.

Установлено, что мелкие верхушечные листья имеют большее число устьиц, чем крупные нижние. Частота устьиц (число их на единицу площади) увеличивается при переходе от основания листа к его верхушке и от нижней части растения к верхней. У растений засушливых мест обитания их больше, но по размеру они меньше.

У большинства мезофитных растений устьица расположены на одном уровне с эпидермальными клетками, а у ксерофитных форм устьица расположены ниже уровня эпидермиса и называются погруженными. У гигрофитов иногда замыкающие клетки расположены выше эпидермиса. Такие устьица называются приподнятыми.

Тот или иной тип строения устьиц характерен для определенных групп растений, хотя в пределах одного семейства могут иногда встречаться различные типы устьиц. Несмотря на значительную площадь, занятую устьицами, диффузия водяного пара через них составляет 50-60% испарения со свободной поверхности. Установлено, что скорость диффузии через мелкие отверстия пропорциональна их периметру, а не площади. Поэтому частичное смыкание замыкающих клеток мало влияет на их периметр, и уровень диффузии водяного пара через устьица не очень резко падает.

Опыт 1. Наблюдение за движением устьиц под микроскопом.

Цель опыта : определить зависимость работы устьиц от осмотически активных веществ.

Материалы и оборудование: 5% раствор глицерина, бритва, препаровальная игла, микроскоп, стекла предметные и покровные.

Растения: листья (традесканции, тюльпана, гортензии или амариллиса, каланхое).

Газообмен между межклетниками листа и наружной атмосферой регулируется устьицами. Каждое устьице состоит из двух замыкающих клеток, у которых стенки, примыкающие к устьичной щели, сильно утолщены, тогда как наружные части оболочки остаются тонкими. Неодинаковая толщина наружных и внутренних стенок приводит к тому, что при изменении тургора замыкающие клетки способны искривиться или распрямиться, открывая или закрывая при этом устьичную щель.

Ход работы : изготавливают срезы эпидермиса листа выбранного растения, которые помещают в 5% раствор глицерина и выдерживают не менее 1 ч. Срезы рассматривают под микроскопом, определяют степень раскрытия устьичной щели с помощью окуляр-микрометра. Делают 10 промеров, находят среднее значение и вычисляют ошибку средней. Затем срезы переносят из раствора глицерина в воду и повторяют промеры устьичных щелей под микроскопом. Результаты заносят в таблицу 1.

Таблица 1

Степень раскрытия устьичной щели в разных средах

Растение, орган

№ промера

Степень открытия устьичной щели

Глицерин

Лист растения

Задание: сделать вывод о влиянии глицерина и воды на открытие и закрытие устьиц.

Опыт 2. Определение состояния устьиц и межклетников методом Молиша

Цель опыта : определит влияние внешних условий на состояние устьиц и интенсивность транспирации.

Материалы и оборудование : ксилол (в капельнице), этиловый спирт (в капельнице); бензол (в капельнице), пипетки.

Растение : свежие или подвядшие листья растений, листья растений, находившихся в темноте.

Межклетники листа обычно бывают заполнены воздухом, благодаря чему при рассматривании на свет лист представляется матовым. Если произвести инфильтрацию, т.е. заполнение межклетников какой-либо жидкостью, то соответствующие участки листа становятся прозрачными.

Определение состояния устьиц методом инфильтрации основано на способности жидкостей, смачивающих клеточные оболочки, проникать в силу капиллярности через открытые устьичные щели в ближайшие межклетники, вытесняя из них воздух, в чем легко убедиться по появлению на листе прозрачных пятен. Разные жидкости способны проникать в устьичные щели, открытые в различной степени: ксилол легко проникает через слабо открытые устьица, бензол – через устьица открытые средне, а этиловый спирт способен проникать только через широко открытые устьица.

Данный метод, предложенный Молишем, очень прост и вполне применим для работы в полевых условиях.

Ход работы . На нижнюю поверхность листа нанести отдельно маленькие капли бензола, ксилола и этилового спирта. Держать лист в горизонтальном положении до полного исчезновения капель, которые могут либо испариться, либо проникнуть внутрь листа, и рассмотреть лист на свет.

Исследовать листья, выдержанные в различных условиях (свежие и подвядшие, освещенные и затененные и т.п.). Каждый раз исследовать 2-3 листа.

Определение состояния устьиц у комнатных растений

Лист растения выполняет различные функции. Это главный орган, в котором происходят фотосинтез, газообмен и транспирация (испарение воды). Для осуществления газообмена в наземных органах растения имеются специальные образования – устьица.

Устьица, хотя и являются частью эпидермиса (кожицы листа), представляют собой особые группы клеток. Устьичный аппарат состоит из двух замыкающих клеток, между которыми имеется устьичная щель, 2–4 околоустьичных клеток и газовоздушной камеры, находящейся под устьичной щелью.

Замыкающие клетки устьиц имеют удлиненно-изогнутую, «бобовидную» форму. Их стенки, обращенные к устьичной щели, утолщены. Устьичные клетки способны изменять свою форму – за счет этого происходит открытие или закрытие устьичной щели. В этих клетках находятся хлоропласты (зеленые пластиды). Открытие и закрытие устьичной щели происходит за счет изменения тургора (осмотического давления) в замыкающих клетках. В хлоропластах замыкающих клеток имеется крахмал, который может превращаться в сахар. При превращении крахмала в сахар осмотическое давление увеличивается, при этом устьица открываются. При понижении содержания сахара происходит обратный процесс, и устьица закрываются.

Устьичные щели часто бывают широко открыты рано утром и закрыты (или полузакрыты) в дневное время. Число устьиц зависит от условий внешней среды (температуры, освещенности, влажности). Степень их раскрытия в разное время суток сильно изменяется у различных видов. В листьях растений влажных местообитаний плотность расположения устьиц составляет 100–700 на 1 мм 2 .

У большинства наземных растений устьица находятся только на нижней стороне листа. Могут они находиться и на обеих сторонах листа, как, например, у капусты или подсолнечника. При этом плотность расположения устьиц на верхней и нижней сторонах листа не одинаково: у капусты 140 и 240 на 1 мм 2 , а у подсолнечника 175 и 325 на 1 мм 2 , соответственно. У водных растений, например у кувшинок, устьица расположены только на верхней стороне листа с плотностью около 500 на 1 мм 2 . У подводных растений устьтиц нет совсем.

Цель работы:

определение состояния устьиц у различных комнатных растений.

Задачи

1. Изучить вопрос о строении, расположении и количестве устьиц у различных растений по дополнительной литературе.

2. Отобрать растения для исследования.

3. Определить состояние устьиц, степень их открытия у различных комнатных растений, имеющихся в кабинете биологии.

Материалы и методы

Определение состояния устьиц проводилось по методике, описанной в «Методических рекомендациях по физиологии растений» (составители Е.Ф. Ким и Е.Н. Гришина). Суть методики состоит в том, что степень открытия устьиц определяется по проникновению в мякоть листа некоторых химических веществ. Для этой цели используются различные жидкости: эфир, спирт, бензин, керосин, бензол, ксилол. Мы использовали спирт, бензол и ксилол, предоставленные нам в кабинете химии. Проникновение этих жидкостей в мякоть листа зависит от степени открытия устьиц. Если через 2–3 мин после нанесения на нижнюю сторону листовой пластинки капли жидкости на листе появляется светлое пятно, то это означает, что жидкость проникает через устьица. При этом спирт проникает в лист только при широко открытых устьицах, бензол – уже при средней ширине открытия, а через почти закрытые устьица проникает только ксилол.

На первом этапе работы мы попробовали установить возможность определения состояния устьиц (степени открытия) у различных растений. В этом опыте использовали агаву, циперус, традесканцию, герань, кислицу, сингониум, лилию амазонскую, бегонию, санхецию, диффенбахию, клеродендрон, пассифлору, тыкву и фасоль. Для дальнейшей работы были отобраны кислица, герань, бегония, санхеция, клеродендрон, пассифлора, тыква и фасоль. В остальных случаях степень открытия устьиц определить не удалось. Это может быть связано с тем, что агава, циперус, лилия имеют достаточно жесткие листья, покрытые налетом, который препятствует проникновению веществ через устьичную щель. Другой возможной причиной могло быть то, что ко времени проведения опыта (14.00 ч) их устьица были уже закрыты.

Исследование проводилось в течение недели. Ежедневно после уроков, в 14.00, указанным выше методом мы определяли степень открытия устьиц.

Результаты и обсуждение

Полученные данные представлены в таблице. Приведенные данные усреднены, т.к. в разные дни состояние устьиц было неодинаково. Так, из шести замеров у кислицы два раза зафиксировано широкое открытие устьиц, у герани – один раз, а у бегонии два раза зафиксирована средняя степень открытия устьиц. Эти различия не зависят от времени проведения опыта. Возможно, они связаны с климатическими условиями, хотя температурный режим в кабинете и освещенность растений были достаточно постоянными. Таким образом, полученные усредненные данные можно считать определенной нормой для этих растений.

Проведенное исследование указывает на то, что у различных растений в одно и то же время и в одних и тех же условиях степень открытия устьиц не одинакова. Есть растения с широко раскрытыми устьицами (бегония, санхеция, тыква), средней величиной устьичной щели (кислица, герань, фасоль). Узкие устьичные щели обнаружены только у клеродендрона.

Эти результаты мы расцениваем как предварительные. В дальнейшем мы планируем установить, существует ли и как различаются биологические ритмы в открытии и закрытии устьиц у различных растений. Для этого будет проведен хронометраж состояния устьичных щелей в течение дня.

Особое значение в жизни растения имеют устьица, относящиеся к системе эпидермальной ткани. Строение устьиц настолько своеобразно и значение их настолько велико, что их следует рассмотреть особо.

Физиологическое значение эпидермальной ткани имеет двойственный, в значительной степени противоречивый характер. С одной стороны, эпидермис структурно приспособлен к защите растения от высыхания, чему способствует плотное смыкание эпидермальных клеток, образование кутикулы и относительно длинных кроющих волосков. Но с другой стороны, эпидермис должен пропустить сквозь себя массы устремляющихся во взаимно противоположных направлениях паров воды и различных газов. Газо- и парообмен при некоторых обстоятельствах могут быть весьма интенсивными. В растительном организме указанное противоречие с успехом разрешается с помощью устьиц. Устьице состоит из двух своеобразно измененных эпидермальных клеток, соединенных между собой противоположными (по своей длине) концами и называемых замыкающими клетками . Межклетник между ними носит название устьичной щели .

Замыкающие клетки называются так потому, что они путем активного периодического изменения тургора меняют свою форму таким образом, что устьичная щель то открывается, то закрывается. Для этих устьичных движений большое значение имеют следующие две особенности. Во-первых, замыкающие клетки в отличие от остальных клеток эпидермиса содержат хлоропласты, в которых на свету происходит фотосинтез и образуется сахар. Накопление сахара как осмотически деятельного вещества вызывает изменение тургорного давления замыкающих клеток по сравнению с другими клетками эпидермиса. Во-вторых, оболочки замыкающих клеток утолщаются неравномерно, поэтому изменение тургорного давления вызывает неравномерное изменение объема этих клеток, а, следовательно, изменение их формы. Изменение же формы замыкающих клеток и вызывает изменение ширины устьичной щели. Поясним это на следующем примере. На рисунке изображен один из типов устьиц двудольных растений. Самую наружную часть устьица составляют пленчатые выступы, образованные кутикулой, иногда ничтожные, а иногда довольно значительные. Они ограничивают от наружной поверхности небольшое пространство, нижнюю границу которого составляет сама щель устьица, носящее название переднего дворика устьица . За щелью устьица, ковнутри, расположено еще одно небольшое пространство, отграниченное небольшими внутренними выступами боковых стенок замыкающих клеток, называемое внутренним двориком устьица . Внутренний дворик непосредственно открывается в большой межклетник, называемый воздушной полостью .

На свету в замыкающих клетках образуется сахар, он оттягивает воду от соседних клеток, тургор замыкающих клеток увеличивается, тонкие места их оболочки растягиваются сильнее, чем толстые. Поэтому выпуклые выступы, выпячивающиеся в щель устьица, становятся плоскими и устьице раскрывается. Бели сахар, например, ночью переходит в крахмал, то тургор в замыкающих клетках падает, это вызывает ослабление растянутости тонких участков оболочки, они выпячиваются навстречу друг другу и устьице закрывается. У разных растений механизм закрывания и открывания щели устьиц может быть разным. Например, у злаков и осок замыкающие клетки имеют расширенные концы и сужены в средней части. Оболочки в средних частях клеток утолщены, в то время как расширенные их концы сохраняют тонкие целлюлозные оболочки. Увеличение тургора вызывает разбухание концов клеток и вследствие этого отхождение друг от друга прямых медианных частей. Это и приводит к раскрытию устьица.

Особенности в механизме работы устьичного аппарата создаются как формой и строением замыкающих клеток, так и участием в нем соседних с устьицами клеток эпидермиса. Если клетки, непосредственно примыкающие к устьицам, отличаются по своему облику от прочих клеток эпидермиса, их называют сопровождающими клетками устьиц .

Чаще всего сопровождающие и замыкающие клетки имеют общее происхождение.

Замыкающие клетки устьица либо несколько приподняты над поверхностью эпидермиса, либо, наоборот, опущены в более или менее глубокие ямки. В зависимости от положения замыкающих клеток по отношению к общему уровню поверхности эпидермиса несколько меняется и самый механизм регулировки ширины устьичной щели. Иногда замыкающие клетки устьица одревесневают и тогда регулировка открывания устьичной щели определяется деятельностью соседних эпидермальных клеток. Расширяясь и съеживаясь, т. е. изменяя свой объем, они увлекают примыкающие к ним замыкающие клетки. Однако нередко устьица с одревесневшими замыкающими клетками совсем не закрываются. В таких случаях регуляция интенсивности газо- и парообмена осуществляется иначе (путем так называемого начинающегося подсыхания). В устьицах с одревесневшими замыкающими клетками кутикула часто покрывает довольно мощным слоем не только всю устьичную щель, но распространяется даже на воздушную полость, выстилая ее дно.

У большинства растений устьица имеются на обеих сторонах листа или же только на нижней стороне. Но есть и такие растения, у которых устьица образуются лишь на верхней стороне листа (на листьях, плавающих на поверхности воды). Как правило, устьиц на листьях больше, чем на зеленых стеблях.

Число устьиц на листьях различных растений весьма различно. Например, число устьиц на нижней стороне листа костра безостого равно в среднем 30 на 1 мм 2 , у подсолнечника, произрастающего в тех же условиях, - около 250. У некоторых растений насчитывается до 1300 устьиц на 1 мм 2 .

У экземпляров одного и того же вида растений густота и размеры устьиц в сильной степени зависят от экологических условий. Например, на листьях подсолнечника, выращенного на полном свету, на 1 мм 2 листовой поверхности в среднем приходилось 220 устьиц, а у экземпляра, выращенного рядом с первым, но при небольшом затенении - около 140. На одном растении, выращиваемом на полном свету, густота устьиц возрастает от нижних листьев к верхним.

Число и размеры устьиц сильно зависят не только от условий произрастания растения, но и от внутренних взаимоотношений жизненных процессов в самом растении. Эти величины (коэффициенты) являются чувствительнейшими реагентами на каждую комбинацию факторов, обусловливающих произрастание растения. Поэтому определение густоты и размеров устьиц листьев растений, выращенных в различных условиях, дает некоторое представление о характере взаимоотношения каждого растения с окружающей его средой. Все методы определения размеров и количества анатомических элементов у того или другого органа относятся к категории количественно-анатомических методов, которыми иногда пользуются при экологических исследованиях, а также для характеристики сортов культурных растений, так как каждому сорту какого-либо культурного растения свойственны определенные пределы размеров и количества анатомических элементов на единицу площади. Методы количественной анатомии могут быть применены с большой пользой как в растениеводстве, так и в экологии.

Наряду с устьицами, предназначенными для газо- и парообмена, существуют еще устьица, через которые выделяется вода не в виде пара, а в капельно-жидком состоянии. Иногда такие устьица вполне сходны с обычными, только несколько крупнее их, а замыкающие клетки их лишены подвижности. Весьма часто у такого устьица во вполне зрелом состоянии замыкающие клетки отсутствуют и остается лишь отверстие, выводящее воду наружу. Устьица, выделяющие капельно-жидкую воду, называют водными , а все образования, участвующие в выделении капельно-жидкой воды, - гидатодами .

Строение гидатод разнообразно. Одни гидатоды имеют под отверстием, выводящим воду, паренхиму, участвующую в передаче воды от водопроводящей системы и в выделении ее из органа; у других гидатод водопроводящая система непосредственно подходит к выводному отверстию. Особенно часто гидатоды образуются на первых листьях проростков различных растений. Так, во влажную и теплую погоду молодые листья злаков, гороха и многих луговых трав капля за каплей выделяют воду. Это явление можно наблюдать в первую половину лета ранним утром каждого погожего дня.

Наиболее хорошо выраженные гидатоды расположены по краям листьев. Нередко одну или несколько гидатод несет каждый из зубчиков, оторачивающих края листьев.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Ключевые слова

ВОДНЫЙ РЕЖИМ / КОЛИЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ УСТЬИЦ / ЛИСТОВЫЕ ПЛАСТИНКИ / BETULA PENDULA ROTH / СТАБИЛЬНОСТЬ РАЗВИТИЯ / АНТРОПОГЕННЫЕ / БИОТИЧЕСКИЕ И АБИОТИЧЕСКИЕ ФАКТОРЫ / WATER REGIME / QUANTITATIVE INDICATORS OF STOMATA / LEAF BLADES / DEVELOPMENTAL STABILITY / ANTHROPOGENIC / BIOTIC AND ABIOTIC FACTORS

Аннотация научной статьи по биологическим наукам, автор научной работы - Беляева Юлия Витальевна

Данная исследовательская работа посвящена изучению водного режима Betula pendula Roth . Оценка проводилась по результатам исследования количественных показателей устьиц листовых пластинок. Анализирование проводилось в летний период. Было установлено, что в начале лета показатели водоудерживающей способности высокие, а в конце лета, ближе к осени низкие. Полученные данные показывают сильную зависимость количества устьиц от загрязненности воздуха мест произрастания исследуемого вида.

Похожие темы научных работ по биологическим наукам, автор научной работы - Беляева Юлия Витальевна

  • Распределение показателей количества пыли на листовых пластинках Betula pendula Roth. , произрастающей в Г. О. Тольятти

    2015 / Беляева Юлия Витальевна
  • Результаты исследования водоудерживающей способности листовых пластинок Betula pendula roth . , произрастающей в условиях антропогенного воздействия (на примере Г. О. Тольятти)

    2014 / Беляева Юлия Витальевна
  • Показатели флуктуирующей асимметрии Betula pendula Roth. В условиях антропогенного воздействия (на примере Г. О. Тольятти)

    2013 / Беляева Юлия Витальевна
  • Показатели флуктуирующей асимметрии Betula pendula Roth. В естественных и антропогенных условиях Тольятти

    2014 / Беляева Ю. В.
  • Сравнение морфологических признаков листа Betula pendula в условиях урбаносреды

    2013 / Хикматуллина Гульшат Радиковна
  • Особенности эколого-биологического состояния городских древесных насаждений (на примере Betulapendula)

    2018 / Беляева Ю.В.
  • Вариация пигментного комплекса пластид Betula L. в зависимости от факторов среды

    2014 / Баландайкин М.Э.
  • Кавеленова Л. М. Проблемы организации системы фитомониторинга городской среды в условиях лесостепи. Учебное пособие. Самара: Изд-во «Универс групп», 2006. 223 с. Бухарина И. Л. , Поварницина Т. М. , Ведерников К. Е. Эколого-биологические особенности древесных растений в урбанизированной среде. Ижевск: ФГОУ ВПО Ижевская ГСХА, 2007. 216 с

    2008 / Розенберг Г. С.
  • Сирень венгерская - перспективный биоиндикатор для сравнительной оценки степени загрязнения городской среды

    2014 / Полонский В. И., Полякова И. С.
  • Оценка состояния лиственных деревьев и состава филлофагов в условиях г. Йошкар-Олы

    2017 / Турмухаметова Нина Валерьевна

This research work is devoted to the study of the water regime Betula pendula Roth . The evaluation was conducted according to a study of quantitative indicators of stomata of the leaf blades . Analyzing was conducted in the summer. It was found that in the early summer high performance water-holding capacity, and at the end of the summer, closer to the fall low. These data show a strong dependence of the number of stomata on air pollution habitats studied species.

Текст научной работы на тему «Результаты исследования количества устьиц листовых пластинок Betula pendula Roth . , произрастающей в условиях антропогенного воздействия (на примере Г. О. Тольятти)»

Наземные экосистемы

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ КОЛИЧЕСТВА УСТЬИЦ ЛИСТОВЫХ ПЛАСТИНОК BETULA PENDULA ROTH., ПРОИЗРАСТАЮЩЕЙ В УСЛОВИЯХ АНТРОПОГЕННОГО ВОЗДЕЙСТВИЯ (НА ПРИМЕРЕ Г.О.ТОЛЬЯТТИ)

© 2015 Ю.В. Беляева

Институт экологии Волжского бассейна РАН, г. Тольятти Поступила 12.01.2015

Данная исследовательская работа посвящена изучению водного режима Betula pendula Roth. Оценка проводилась по результатам исследования количественных показателей устьиц листовых пластинок. Анализирование проводилось в летний период. Было установлено, что в начале лета показатели водоудерживающей способности высокие, а в конце лета, ближе к осени -низкие. Полученные данные показывают сильную зависимость количества устьиц от загрязненности воздуха мест произрастания исследуемого вида.

Ключевые слова: водный режим, количественные показатели устьиц, листовые пластинки, Betula pendula Roth., стабильность развития, антропогенные, биотические и абиотические факторы.

ВВЕДЕНИЕ

Городской округ Тольятти является одним из самых развивающихся центров России. Основными источниками загрязнения атмосферы служат крупнейшие предприятия автомобилестроения, нефтехимии, по производству химических удобрений и стройматериалов, ТЭЦ и котельные, автомобильный и железнодорожный транспорт с высокой плотностью автотранспортных потоков, речной порт. Дополнительными - рост численности населения, интенсивная застройка жилыми и административными зданиями. Оценка загрязнения атмосферного воздуха г. Тольятти выявила, что наиболее загрязнена атмосфера Центрального района (в 2 и 1,3 раза выше допустимого), далее следует Комсомольский район (в 2 и 1,1 раза выше допустимого), далее Автозаводской район (в 1,9 раза), минимальна загрязнена пригородная зона (по данным ФГБУ «Приволжское УГМС», 2015).

Высокая степень загрязнения, присущая таким городам, приводит к ослаблению некоторых видов древесных растений, их преждевременному старению, снижению продуктивности, поражению болезнями и вредителями, усыханию и гибели. Betula pendula Roth, является распространенным древесным видом в городских насаждениях

Для устойчивых видов древесных растений

характерны такие признаки, как большее число 1 2

устьиц на 1 мм поверхности листа; меньшая длительность и степень открытости их в течение дня; большая толщина кутикулы и наличие дополнительных покровных образований; меньшая толщина и вентилируемость губчатой паренхимы; меньшая величина отношения высоты палисадной ткани к высоте губчатой .

Беляева Юлия Витальевна, ассистент, [email protected]

Необходимы научные исследования по изучению механизмов адаптации, росту и развитию древесных растений, а так же их приживаемости в условиях негативного антропогенного воздействия промышленно-развитых городов. В настоящее время является актуальной работа в области экологического мониторинга, который включает в себя химические, физические и биологические методы оценки качества среды. Мы проводим комплексную эколого-биологическую оценку состояния городских древесных растений. Используя эколого-биологическую оценку можно получить конкретные данные о состоянии зеленых насаждений в условиях городской среды, подверженной антропогенному и климатическому влиянию . В Самарской области лето 2010 г. отличалось тремя месяцами отсутствия дождей, экстремальной сухостью воздуха и как следствие многочисленными пожарами, которые погубили много гектаров драгоценного леса . Жара, температура более 40°С, плюс 45°С в тени, плюс 70°С на почве, сухая земля на глубине 3-6 м., постоянно палящее солнце, а так же отраженное тепло и свет в городской черте. Эти факторы повлияли на насаждения Betula pendula Roth., произрастающие в городе и пригороде. В течение последующих лет, выявился факт, говорящий о том, что особи Betula pendula Roth. продолжают страдать и усыхать. Поэтому особо остро стоит проблема в эффективности данного вида растения, о мероприятиях по восстановлению посадок Betula pendula Roth. или замене другими более устойчивыми видами, а так же о стабилизации экологической обстановки в городе.

МАТЕРИАЛ И МЕТОДИКА

Известно, что процессы испарения воды (транспирация) и газообмена у растений происходит через устьица. Загрязнение атмосферы влияет на устьичный аппарат растений, что приводит к

нарушению функций устьиц и гибели растения. Подсчитав количество устьиц на листовых пластинках и сравнив с контролем, можно получить данные говорящие о состоянии растения, его адаптационной способности, а также выявить места повышенного загрязнения.

Районы исследования расположены в зоне континентального климата умеренных широт с характерным арктическим и тропическим воздухом. Зимой это проявляется в виде сильных морозов, а летом - резкими колебаниями температуры в течение суток. В году средняя месячная температура воздуха в Тольятти варьируется от +20,7°С в июле до -11°С в январе .

Целью исследования явилась оценка состояния Betula Pendula Roth, в условиях антропогенного загрязнения города Тольятти, с использованием анатомо-физиологических характеристик листовых пластинок.

Исследования проводились в 2013-2014 гг. на пяти опытных площадках двух административных районов в различных типах насаждений. В Автозаводском районе это Промышленная зона и Парк Победы. В Центральном районе это улица Баныкина и пригородный лес. Контрольная площадка находилась в Узюковском бору (в 25 км от городской черты).

Объектом исследования явилась Betula Pendula Roth, произрастающая во всех районах города и за городской чертой. Это вид растений рода Берёза (Betula), семейства Берёзовые (Betulaceae). Быстрорастущая древесная порода. Очень светолюбива, ее крона ажурна, пропускает много света .

Предметом исследования является количественный показатель устьиц листовой пластинки Betula pendula Roth. Данная методика опробована для Betula pendula Roth, произрастающей в условиях различных природных ценозов и внутригородских территорий г.о. Тольятти, Самарская область.

Оценку анатомо-физиологического состояния листовых пластинок исследуемого вида проводили в июне, июле и августе методом, разработанным на основе стандартных методик . Изучение анатомо-физиологических показателей проводилось путем подсчета количества устьиц на 1 мм2 с помощью микроскопа. Математическая обработка полученных данных проводилась с помощью пакета Microsoft Office - Microsoft Excel. Для интерпретации полученных результатов использовался корреляционный анализ .

Для анализа использовали средневозрастные растения. Листья брали из нижней части кроны, на уровне поднятой руки, с максимального количества доступных веток (с веток разных направлений, условно - на север, юг, запад, восток) по 10 листьев с каждого дерева на каждом участке. Листья брали примерно одного, среднего для данного вида размера.

Подсчет устьиц проводился в лабораторных условиях. На испаряющей поверхности листа подготовленных к опыту листовых пластинках скальпелем под прямым углом к центральной жилке делались поверхностные надрезы через 2-3 мм и срезался тонкий слой эпидермиса. Эпидермис листовой пластинки помещали в каплю воды на предметное стекло, накрывали покровным и рассматривали под световым микроскопом при малом увеличении, а потом микроскоп переводили на большее увеличение с объективом х40, окуляром х16. При этом микровинтом слегка меняли фокусировку, чтобы обнаружить все устьица на рассматриваемом участке. Определяли среднее число устьиц в поле зрения микроскопа, исследовав несколько (3-4) полей зрения в разных участках препарата. Подсчитывали количество устьиц в световом пятне в трех местах на каждом листе: на мысленно очерченной прямой от центральной жилки к краю листа выбиралось два места, а третье на верхушке листа.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Результаты исследования показали, что у Betula pendula Roth., произрастающей в черте города -Промышленной зоне, Парке Победы и улице Баныкина приходится большее число устьиц на 1

мм листовои поверхности, по сравнению с пригородным лесом и контролем - Узюковский бор. Максимальное увеличение числа устьиц на 1 мм2 листовой пластинки отмечается в Промышленной зоне. При приближении к автомагистралям количество устьиц резко возрастает. Полученные показатели количества устьиц листовых пластинок в 2014 г. выше, чем в 2013 г. В связи с тем, что 2014 г. был более сухим, чем 2013 г. Летний сезон 2013 г. характеризовался частым выпадением осадков в виде дождя. Визуальное сравнение размеров устьиц с листьев из разных точек города показало видимое уменьшение их размеров по мере загрязнения воздушной среды.

Целостность устьичных клеток нарушается под влиянием химических загрязнений воздуха. Замыкающие клетки устьиц не способны регулировать ширину устьичной щели. От этого устьица постоянно открыты и увеличивается расход воды растением на транспирацию. Что в такой ситуации делает растение? Увеличивает количество устьиц на своих листовых пластинках, тем самым компенсируя уменьшение размеров листьев. Уменьшение площади листовых пластинок необратимо приводит к сокращению устьичного аппарата, потому увеличение количества устьиц при уменьшении общей площади листьев приводит к сохранению функций газообмена и транспирации листовых пластинок Betula pendula Roth. Полученные данные за два года исследования, говорят о том, что уменьшение размеров листовых пластинок компенсируются увеличением количества устьиц. По сравнению с эталонным участком 202

Наземные экосистемы

в Промышленной зоне 445 (отмечено увеличение в 2,2 раза), в Парке Победы 411 (увеличение в 2 раза), на улице Баныкина 334 (в 1,6 раза) и в пригородном лесу 244 (в 1,2 раза). Из диаграммы

видно, что за год показатель количества устьиц листовых пластинок увеличился в среднем в 3,5 раза.

500,00 а ■о g 450,00 i S з с S ï 400,00 II g 1 350,00 § О ÜJ ^ 300,00 iä s E 250,00 i i ¥ 4 200,00 3 4 * 150,00 461,00 4Ï!),00 --■

206, OO^^^i-^^^231,00

Узюновский бор Лес городской Улица Баныкина Парк Победы Промзона

Количество устьиц на1мм2 (2013 г.) 198,00 231,00 319,00 392,00 429,00

Количество устьиц на1мм2 (2014 г.) 206,00 257,00 348,00 430,00 461,00

Рис. Результаты оценки количества устьиц листа Betula pendula Roth. за 2013-2014 гг. ЗАКЛЮЧЕНИЕ

На основании подсчетов было вычислено

среднее количество устьиц на 1 мм листовои пластинки. Опытные образцы собраны с различных площадок. По результатам был построен график, на котором средние данные с разных точек исследования выразились в кривую линию, указывающую на увеличение количества устьиц по мере возрастания загрязненности воздуха. Полученные нами экспериментальные данные свидетельствуют, что в г.о. Тольятти, в условиях комплексного загрязнения атмосферного воздуха, повышенного содержания выхлопных газов автотранспорта наблюдается ослабление жизненного состояния Betula pendula Roth, что выражается в ухудшении анатомо-физиологических характеристик листьев. Однако, увеличение количества устьиц на листовой пластинке, изменение площади и массы листа, дисперсности, анатомии листа, следует рассматривать как адаптацию популяции Betula pendula Roth, к условиям техногенного загрязнения городской среды.

Betula pendula Roth, хорошо адаптирующийся вид. Но растущая с каждым годом антропогенная нагрузка настолько большая, что становится больше мертвых особей, чем адаптированных. Понятно, что для улучшения экологической ситуации в г. Тольятти необходима посадка Betula pendula Roth, в местах, где отсутствует растительность, и имеются дороги с большой автомобильной нагрузкой (например, Промышленная зона). Сохранение особей Betula pendula Roth, так же необходимо, как и высаживание молодых образцов, потому что гибель одного вида растений означает угрозу существования от 10 до 30 видов живых существ.

Эколого-биологическую оценку состояния древесных растений по различным биоиндикационным показателям нужно использовать при ис-

следовании состояния растении и городской среды.

БЛАГОДАРНОСТИ

Автор выражает глубокую благодарность и искреннюю признательность своему научному руководителю C.B. Саксонову (ИЭВБ РАН, Тольятти) за понимание, поддержку и ценные советы, В.Н. Козловскому (ПВГУС, Тольятти) за направление на путь истинный и неоценимую поддержку, О.В. Козловской (ПВГУС, Тольятти) за личный пример и неоценимую поддержку, A.B. Гре-бенкину (РГГУ, Тольятти-Москва) и A.C. Мыч-киной (ВЭГУ, Тольятти) за помощь в полевых сборах материала и дружескую поддержку, М.А. Пьянову за конструктивную критику (ПВГУС, Тольятти), В.М. Васюкову (ИЭВБ РАН, Тольятти) и A.B. Ивановой (ИЭВБ РАН, Тольятти) за ценные советы и доброе отношение. Особая благодарность за понимание и терпение моей дорогой маме Л.В. Беляевой.

СПИСОК ЛИТЕРАТУРЫ

1. Алексеев В.А. Лесные экосистемы и атмосферное загрязнение. Л.: Наука. 1990. 197 с.

2. Беляева Ю.В. Результаты исследования водоудер-живающей способности листовых пластинок Betula pendula roth., произрастающей в условиях антропогенного воздействия (на примере г.о. Тольятти) // Известия Самарского научного центра РАН. 2014. Т. 16, № 5 (5). С. 16541659.

3. Биоэкологические исследования [Интернет-ресурс] - Режим доступа: http://nsmelaya.narod.ru/ecopraktika.htm

4. Булыгин Н.Е., Ярмишко В. Т. Дендрология: учебник / 2-е изд. стер. - М.: МГУЛ, 2003. 528 с.

5. Гроздова Н.Б., Некрасов В.И., Глоба-Михайленко Д.А. Деревья, кустарники и лианы. М: Лесная промышленность, 1986.

6. Захаров В.М., Баранов A.C., Борисов В.И. и др. Здоровье среды: методы оценки. М.: Центр экологической политики России, 2000. 68 с.

7. Кавеленова Л.М. Проблемы организации системы фитомониторинга городской среды в условиях лесостепи. Самара: Изд-во «Универс групп», 2006. 223 с.

8. Кавеленова Л.М. Экологические основы и принципы построения системы фитомониторинга урбосреды в лесостепи // Вестник Сам. гос. ун-та, 2003, спец. выпуск 2. 182-191.

9. Кавеленова Л.М., Прохорова Н.В. Растения в биоиндикации окружающей среды. Учебное пособие. Самара, 2012.

10. Козловская О.В. Материалы к флоре поселка Поволжский и его окрестностей (городской округ Тольятти). 1: Двудольные растения // Экология и география растений и сообществ Среднего Поволжья. Материалы III научной конференции (Тольятти, ИЭВБ РАН, 3-5 октября 2014 г.) / Под ред. С.А. Сенатора, C.B. Саксонова, Г.С. Розенберга. Тольятти: Кассандра, 2014. С. 210-216.

11. Кулагин Ю.З. Древесные растения и промышленная среда. М.: Наука, 1974. 125 с.

12. Николаевский B.C. Биологические основы газоустойчивости растений. Новосибирск: Наука, 1979. 280 с.

13. Полевой В.В. Физиология растений. М. 1989. 464 с.

14. Саеенко О.В., Саксоное C.B., Сенатор С.А. Материалы для флоры Узюковского лесного массива // Исследования в области естественных наук и образования. Межвуз. Сб. науч.-исслед. работ. Вып. 2. Самара, 2011. С. 48-53.

15. Саксоное C.B., Сенатор С.А. Путеводитель по Самарской флоре (1851-2011). Флора Волжского бассейна. T.I. Тольятти: Кассандра, 2012. 511 с.

16. Тольяттинская специализированная гидрометеорологическая обсерватория государственного учреждения, Самарский центр по гидрометеорологии и мониторингу окружающей среды (данные).

RESULTS QUANTITY OF STOMA LAMINA BETULA PENDULA ROTH., GROWING UNDER ANTHROPOGENIC IMPACT (ILLUSTRATED G.O.TOLYATTI)

© 2015 Y. Belyaeva

Institute of ecology of Volga basin of RAS, Togliatti

This research work is devoted to the study of the water regime Betula pendula Roth. The evaluation was conducted according to a study of quantitative indicators of stomata of the leaf blades. Analyzing was conducted in the summer. It was found that in the early summer high performance water-holding capacity, and at the end of the summer, closer to the fall - low. These data show a strong dependence of the number of stomata on air pollution habitats studied species.

Key words: water regime, quantitative indicators of stomata, leaf blades, Betula pendula Roth., developmental stability, anthropogenic, biotic and abiotic factors.

Belyaeva Julia Vitaljevna, assistant, [email protected]

Вариант 1.

Задание 1.

Какое понятие следует вписать на место пропуска в этой таблице? 1) венчик 2) пестик 3) тычинка 4) завязь

Задание 2. П (2)

х у

Сколько семян от общего количества прорастёт в 7-й день?

10% 2) 12% 3) 15% 4) 17%

Задание 3

Установите правильное обозначение видов корней.

1 − придаточный корень, 2 − боковой корень, 3 − главный корень

1 − главный корень, 2 − придаточный корень, 3 − боковой корень

1 − главный корень, 2 − боковой корень, 3 − придаточный корень

1− боковой корень, 2 − придаточный корень, 3 − главный корень

Задание 4

Таблица

Название растения

Число устьиц на 1 мм 3

Место произрастания

На верхней поверхности листа

На нижней поверхности листа

Кувшинка

625

Водоём

Дуб

438

Влажный лес

Яблоня

248

Плодовый сад

Овёс

Поле

Молодило

Каменистые

сухие места

4) Зарисуйте устьица и обозначьте на рисунке основные части устьица.

Задание 5.

Установите последовательность расположения слоёв в стебле древесного растения, начиная с его поверхности. В ответе запишите соответствующую последовательность цифр.

1) луб

2) пробка

3) древесина

4) камбий

5) сердцевина

Задание 6

_____________________________________________________________________

Цветок представляет собой видоизменённый побег, приспособленный для полового размножения. Его функция - образование плодов и семян. Именно поэтому цветок иначе называют органом семенного размножения.

Для того чтобы выполнить свою главную функцию, цветок имеет специфическое строение. Он состоит из цветоножки, цветоложа, цветолистиков (чашелистиков и лепестков), тычинок и пестиков.

Цветоножка - это часть стебля, на которой расположены остальные части цветка. С помощью цветоножки цветок снабжается питательными веществами и растёт. Цветоложе расположено на верхней расширенной части цветоножки. К нему прикрепляются цветолистики, которые располагаются кольцами (кругами). Первое кольцо образуют обычно зелёные чашелистики, которые у одних цветков свободные, а у других сросшиеся. Все вместе они образуют чашечку цветка. Она выполняет защитную функцию. Над чашечкой расположен венчик. Обычно он состоит из окрашенных лепестков, которые служат для защиты тычинок, пестиков и для привлечения
животных - опылителей растений. Цвет лепестков зависит от хромопластов или от пигментов клеточного сока. Из чашечки и венчика образуется околоцветник.

Внутри околоцветника за лепестками расположены тычинки. Каждая тычинка состоит из пыльника и тычиночной нити. Тычиночная нить удерживает пыльник, который состоит из пыльцевых мешочков, в которых развивается пыльца.

В самом центре цветка расположен пестик (пестики). Пестик состоит из завязи, столбика и рыльца. В завязи находятся семязачатки, из которых после опыления и оплодотворения развивается семя. От завязи отходит столбик, на котором расположено рыльце. Рыльце - это верхняя часть пестика, куда попадает и откуда прорастает пыльцевое зерно. Рыльце выделяет клейкую жидкость для улавливания пыльцевых зёрен.

ЗАДАНИЕ

ОТВЕТ УЧЕНИКА

Озаглавьте текст

Основная функция цветка

Место где развивается пыльца

Семя развивается из…

Задание 7. П (5) Охарактеризуйте растение по морфологическому признаку.


Стебель:

А) прямостоячий;

Б) стелющийся

Корневая система:

А) стержневая;

Б) мочковатая

Жилкование листьев

А) сетчатое;

Б) параллельное;

В) дуговое.

Лист:

А) черешковый

Б) сидячий

Околоцветник

А) простой;

Б) двойной.

Самостоятельная работа по теме: «Органы растений»

Вариант 2.

Задание 1.

В приведённой ниже таблице между позициями первого и второго столбца имеется взаимосвязь.

Какое понятие следует вписать на место пропуска в этой таблице?

Цветоложе; 2) пестик; 3) тычинка; 4) завязь.

Задание 2. П (2)

Изучите график зависимости количества проросших семян определённой массы (3-4 мг) от продолжительности нахождения семян в почве (по оси х отложено время (в днях), а по оси у - количество проросших семян от общего их числа (в %)).

Сколько семян от общего количества прорастёт в 11-й день?

10% 2) 12% 3) 15% 4) 17%

Задание 3

Установите правильную последовательность расположения слоёв в стебле древесного растения, начиная с поверхности.

Сердцевина - кора - древесина - камбий;

Кора - камбий - древесина - сердцевина;

Кора - древесина - камбий - сердцевина;

Древесина - камбий - кора - сердцевина.

Задание 4 Пользуясь таблицей «Численность устьиц у некоторых растений», ответьте на следующие вопросы.

Таблица

Численность устьиц у некоторых растений

Название растения

Число устьиц на 1 мм 3

Место произрастания

На верхней поверхности листа

На нижней поверхности листа

Кувшинка

625

Водоём

Дуб

438

Влажный лес

Яблоня

248

Плодовый сад

Овёс

Поле

Молодило

Каменистые

сухие места

1) Какую функцию выполняют устьица листа?

2) Как расположены устьица у большинства растений, представленных в таблице?

3) Объясните почему дуб и яблоня имеют устьица на нижней стороне листа.

4) зарисуйте устьица и обозначьте на рисунке основные части устьица.

Задание 5.

Установите последовательность зон корня, начиная с корневого чехлика.

1) Корневой чехлик

2) зона всасывания

3) зона деления

4) зона проведения

5) зона растяжения (роста)

Задание 6 Прочитай те текст. Выполните задания приведённые ниже текста.

______________________________________________________________________

После созревания пыльцы происходит перенос пыльцевого зерна на рыльце пестика. Этот процесс носит название опыления.

У некоторых растений созревшая пыльца попадает на рыльце пестика того же цветка, что приводит к самоопылению. Однако у большинства растений пыльца с одного цветка с помощью ветра, воды, животных, человека переносится на рыльце пестика другого цветка. Такое опыление называется перекрёстным. Наиболее распространённым в природе является перекрёстное опыление с помощью животных (насекомых). Для привлечения насекомых в цветке развиваются особые железы - нектарники, выделяющие сахаристую жидкость (нектар). Перелетая с цветка на цветок и питаясь нектаром, насекомые опыляют цветущие растения, перенося на лапках пыльцу.

У многих древесных, степных и луговых растений перекрёстное опыление осуществляется с помощью ветра. Эти растения - ветроопыляемые. В их цветках рыльце пестика обычно длинное и ветвистое, а тычинки - с длинными тонкими тычиночными нитями, легко раскручивающимися при дуновении ветра.

Цветы насекомоопыляемых растений крупные имеют яркую окраску. Если цветы яркие, но мелкие, то они собраны в соцветия.

Ветроопыляемые растения цветут весной до распускания листьев.

Задание:

Озаглавьте текст

Заполните таблицу. Если названный признак характерен для данной группы растений ставится знак “+”, если нет, то “-”.

Признаки ветроопыляемых и насекомоопыляемых растений.

Признаки

Насекомоопыляемые растения

Ветрооыляемые растения

1 Крупные яркие цветки

2 Мелкие яркие цветки, собранные в соцветия

3 Наличие нектара

4 Мелкие невзрачные цветки, часто собранные в соцветия

5 Наличие аромата

6 Пыльца мелкая, легкая, сухая, большое количество

7 Крупная липкая шероховатая пыльца

8 Растения цветут весной до распускания листьев

Дайте ответ на вопрос.

Почему, когда в Австралию завезли семена клевера и посеяли их, клевер хорошо цвел, но плодов и семян не было?

Задание 7. Охарактеризуйте растение по морфологическому признаку.


Стебель:

А) прямостоячий;

Б) стелющийся

Корневая система:

А) стержневая;

Б) мочковатая

Жилкование листьев

А) сетчатое;

Б) параллельное;

В) дуговое.

Лист:

А) черешковый

Б) сидячий

Соцветие

А) кисть;

Б) корзинка;

В) головка;

Задание 4.

Какие функции выполняют устьица листа?

Как расположены устьица у большинства растений, представленных в таблице?

Объясните почему водные растения имеют наибольшее количество устьиц на верхней стороне листа.

ЗАДАНИЕ

ОТВЕТ УЧЕНИКА

Озаглавьте текст

Основная функция цветка

Какой орган снабжает цветок питательными веществами?

Какая часть околоцветника привлекает насекомых - опылителей?

От чего зависит цвет лепестков

Место где развивается пыльца

Семя развивается из…

Объясните смысл выражения «Кто срезает цветок, тот срезает семя».

Бланк ответов к самостоятельной работе