Катализатор никелевый. Восстановление на никелевых катализаторах Никелевый катализатор

В повседневной жизни, когда мы покупаем, например, маргарин, мы даже не догадываемся, что для его производства необходимо провести гидрирование. Согласно химическому определению, гидрирование происходит тогда, когда к органическим соединениям добавляют водород. В этом процессе могут использоваться разные химические компоненты, но самыми важными являются катализаторы. В промышленном производстве с их помощью изготовляются различные топлива для моторов, парафины, спирты и другие продукты. В металлургической промышленности катализатор никелевый и любые его виды можно использовать в процессе низкофазного гидрирования, а также гидрирования, которое происходит в газовой сфере.

Существуют разные виды этого продукта, но самым популярным является катализатор никелевый U-NI-B и U-NI-A, так как имеет множество преимуществ. Во-первых, эти катализаторы используются в промышленном производстве при изготовлении бензольных колец, оксимов, карбонильных групп, нитрилов и других важных компонентов. Катализатор никелевый может работать и при обычном, и при высоком давлении, что не характерно для других катализаторов. Во-вторых, катализатор никелевый очень легко и быстро изготовить. Для других катализаторов процесс изготовления является очень сложным и долгим. Реагенты для его изготовления доступны в продаже. Удивительным является то, что процесс его приготовления настолько прост, что его может приготовить практический любой человек без специального образования. В-третьих, не понадобится много денег, так как катализатор никелевый может быть изготовлен из недорогих реактивов. В-четвертых, катализатор никелевый сохраняет свою активность очень долгое время. Но при этом его надо хранить в специальном растворителе, в котором нет кислорода.

Сам никель является довольно дефицитным продуктом, поскольку он очень популярный в металлургической промышленности. Этот металл имеет множество преимуществ, так как не боится никакой среды. Будь-то газ, пресная или морская вода, разные химические растворы. Благодаря этому никель практически никогда не портится, так как он также не боится коррозии.

Если вам требуется никелевый катализатор, обращайтесь к нам, и мы вам поможем.

Настоящее изобретение относится к катализаторам гидрирования, способу их получения и применению для гидрирования, такого как селективное гидрирование ацетиленовых примесей в неочищенных олефиновых и диолефиновых потоках. Описан селективный катализатор гидрирования для селективного гидрирования ацетиленовых примесей в неочищенных олефиновых или диолефиновых потоках, содержащий только никель или никель и один или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, нанесенных на носитель, представляющий оксид алюминия, имеющий следующие физические свойства: площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля. Описаны способ получения катализатора, включающий пропитку носителя, представляющего оксид алюминия, имеющего указанные выше физические свойства, растворимыми солями только никеля или никеля и одного или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, из одного или больше растворов с получением пропитанного носителя, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля, и способ селективного гидрирования ацетиленовых соединений, включающий контактирование исходного сырья, содержащего ацетиленовые соединения и другие ненасыщенные соединения, с описанным выше катализатором. Технический эффект- повышение степени извлечения 1,3-бутадиена при полной или почти полной конверсии С4-ацетиленов. 3 н. и 22 з.п. ф-лы, 1 ил., 1 табл.

Рисунки к патенту РФ 2333796

Предпосылки изобретения

Область техники, к которой относится изобретение

Настоящее изобретение относится к новым селективным катализаторам гидрирования и способу получения катализаторов, которые применимы для гидрирования, такого как селективное гидрирование ацетиленовых примесей в неочищенных олефиновых и диолефиновых потоках.

Сущность изобретения

Катализаторы по изобретению содержат только никель или никель и один или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca, Bi, которые наносят на носитель, имеющий следующие физические свойства: удельная площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å. Примерами предпочтительных носителей являются оксид алюминия, диоксид кремния, оксид циркония, талькит, диоксид кремния-оксид алюминия, уголь и т. д. Предпочтительное содержание никеля в катализаторе составляют от примерно 4 до примерно 20 вес.%.

Краткое описание чертежей

Фигура представляет график сравнения извлечения 1,3-бутадиена с использованием селентивного катализатора гидрирования по настоящему изобретению с обычным катализатором.

Подробное описание изобретения

Металлический никель наносят на пористый носитель, как описано, используя обычный метод пропитки, такой как пропитка по начальному влагопоглощению. Катализатор применяют для селективного гидрирования.

Катализаторы содержат только никель или никель и один или больше элементов, выбранных из Cu, Re, Pd, Zn, Mg, Mo, Ca, Bi, чтобы улучшить активность катализатора, стабильность и извлечение олефинов и диолефинов из неочищенных смешанных потоков.

Оксид алюминия является предпочтительным носителем. Предпочтительный оксид алюминия прокаливают в интервале температур от примерно 750 до примерно 1200°С. Предпочтительный прокаленный оксид алюминия в данном изобретении будет иметь, по меньшей мере, 30%, предпочтительно, по меньшей мере, 50%, пор диаметром больше 100 Å и общий объем пор от примерно 0,4 до примерно 0,9 см 3 /г и КОП (кажущуюся объемную плотность) от примерно 0,35 до примерно 0,75 г/см 3 . Предпочтительный оксид алюминия, раскрытый в данном изобретении, может быть получен несколькими методами, хорошо известными специалистам в области техники приготовления активных оксидов алюминия.

Оксид алюминия может содержать до примерно 2 вес.%, предпочтительно меньше 2 вес.%, щелочного металла. Один из предпочтительных оксидов алюминия, раскрытых в данном изобретении, может быть получен методом маслокапельного гелирования. Примеры метода гелирования раскрыты в патентах США №№ 2620314 (1952) и 4273735 (1981). Оксид алюминия в сферической форме может быть получен из гидроксихлорида алюминия, полученного растворением металлического алюминия в водной соляной кислоте. Зольные материалы сферического оксида алюминия в форме капель гелируют в основной жидкой масляной фазе с последующим старением, промыванием, сушкой и прокаливанием с получением обычно гамма-оксида алюминия в промышленном производстве при повышенной температуре. Альтернативно, предпочтительный сферический оксид алюминия также может быть получен методом масло-капельного гелирования, используя дисперсные бемитные или псевдобемитные алюмооксидные золи (см. патент США № 4179408 (1979)). Алюмооксидные золи получают диспергированием подходящего бемита, псевдобемита или смесей бемитного и псевдобемитного оксидов алюминия в кислотной воде. Псевдобемитный или бемитный сырьевые материалы получают гидролизом алкоксидов алюминия и кристаллизацией или реакцией алюмината натрия с солями алюминия, такими как сульфат алюминия, и кристаллизацией. Различные бемитные оксиды алюминия или диспергированные бемитные алюмооксидные золи являются коммерчески доступными. Для получения предпочтительного сферического оксида алюминия, имеющего пористую структуру, как раскрыто в настоящем изобретении, могут быть использованы Дисперал HP 14/2, Диспал 11N&-80, Диспал 23N4-20, Дисперал HP 14, Дисперал 40, Пурал 200, Пурал 100, Пурал NG и т. д. или их смеси. Предпочтительным оксидом алюминия является переходный оксид алюминия, прокаленный при повышенной температуре в интервале от примерно 750 до примерно 1200°С с получением кристаллических дельта-, каппа-, тета- и альфа-форм или их смесей. Прокаленный оксид алюминия может содержать незначительное количество гамма-оксида алюминия, если прокаливание проводят при нижнем значении температурного интервала, указанного выше.

Предпочтительный оксид алюминия в форме различных экструдатов или таблеток также может быть получен использованием предпочтительного бемитного или псевдобемитного оксида алюминия, описанного выше, и прокаливанием при повышенных температурах от примерно 750 до 1200°С. Площадь поверхности оксида алюминия имеет тенденцию к уменьшению при повторном воздействии повышенных температур из-за медленной кристаллизации в более стабильные кристаллические формы. Это уменьшение площади поверхности ускоряется в присутствии влаги в атмосфере или следовых количеств натрия в оксиде алюминия или под воздействием обоих факторов. Обычно алюмооксидный носитель уровня техники для получения катализаторов получают как гамма-оксид алюминия прокаливанием при температурах от примерно 550 до 700°С.

Физические формы предпочтительных оксидов алюминия в данном изобретении могут быть любые, такие как сферы, экструдаты, таблетки и гранулы, которые предпочтительно имеют диаметры меньше, чем примерно 1/4 дюйма, предпочтительно 1/8 дюйма, и меньше, чем 1/2 дюйма в длину, и предпочтительно меньше, чем 1/4 дюйма в длину для экструдатов или таблеток.

Нанесение никеля на носитель может быть выполнено однократной или многократной пропиткой. Раствор соединения никеля получают растворением соединения никеля или органического соединения никеля в органическом растворителе или воде. Примерами соединений никеля являются соли никеля, такие как нитрат никеля, или органометаллические соединения никеля, такие как ацетат никеля, формиат никеля, ацетилацетонат никеля, алкоксиды никеля и т. д. Продукт пропитки сушат и прокаливают при температуре от 200 до 600°С, предпочтительно от 250 до 500°С.

Если катализаторы гидрирования по изобретению содержат один или больше элементов, выбранных из Cu, Re, Pd, Zn, Mg, Mo, Ca или Bi, в дополнение к никелю, то они предпочтительно используются в следующих количествах: Cu от примерно 0,005 до примерно 10 вес.%; Re от примерно 0,1 до примерно 5 вес.%; Pd от примерно 0,01 до примерно 2 вес.%; Zn от примерно 0,1 до примерно 10 вес.%; Ca от примерно 0,1 до примерно 7 вес.%; Mg от примерно 0,1 до примерно 7 вес.%; Mo от примерно 0,1 до примерно 10 вес.%; и Bi от примерно 0,05 до примерно 7 вес.%.

При получении висмутсодержащего никелевого катализатора носитель перед нанесением никеля предпочтительно пропитывают раствором соединения висмута. Примером соединения висмута является нитрат висмута.

При получении серебросодержащего никелевого катализатора носитель предпочтительно пропитывают смешанным раствором соединения никеля и соединения серебра, такого как нитрат серебра. Необязательно, ряд последовательных пропиток может быть проведен, начиная с первой пропитки носителя соединением серебра. Оценку характеристик катализатора проводят, сравнивая извлечение целевого продукта из данного исходного сырья при данной конверсии ацетиленовых соединений или при конверсии, требуемой чтобы отвечать специфическому качеству продукта относительно уровня техники. Например, если селективно гидрируются С4 ацетиленовые соединения в потоке неочищенного бутадиена, и 1,3-бутадиен (1,3-БД) является целевым продуктом, подлежащим извлечению из сырьевого потока, следующая математическая формула определяет извлечение 1,3-бутадиена

Извлечение 1,3-БД (%)=100-(N F - N P)х100/ N F ,

N F =вес.% 1,3-БД в сырьевом потоке, N P =вес.% 1,3-БД в потоке продукта.

Извлечение С4 ацетиленов (объединенных винилацетилена и этилацетилена) определяется таким же образом.

Полная или почти полная конверсия (остается менее 30 m.g.) С4 ацетиленов с высоким извлечением 1,3-бутадиена приводит к устранению одной из двух установок экстрактивной дистилляции для отделения 1,3-бутадиена из смешанного потока. Результатом является более низкая себестоимость 1,3-бутадиена.

Характеристики катализатора ухудшаются со временем работы по разным причинам. Одной причиной является медленное накопление отравляющих углеродистых материалов на поверхности катализатора. Чтобы продлить катализаторный цикл или продолжительность эксплуатации, может быть использован растворитель для отмывки тяжелых полимеров для замедления скорости накопления отравляющих углеродистых материалов на катализаторе. Следовательно, тяжелые полимеры должны быть растворимыми, по меньшей мере до некоторой степени, в растворителе в условиях селективного гидрирования. Примерами таких растворителей являются циклогексан, метилциклогексан, бензол, толуол, алкилнитрилы, фурфураль, диметилацетамид, диметилформамид, метилпирролидон, формилморфолин и простые эфиры, такие как тетрагидрофуран, или их смеси. Растворитель выделяют из выходящего потока реактора для рециркуляции. Необязательно, растворитель может быть накоплен в системе при запуске установки рециркуляцией тяжелых компонентов исходного сырья, которые обычно являются малой частью сырья и также производятся олигомеризацией и полимеризацией во время селективного гидрирования в каталитической реакционной зоне (зонах). Растворитель подают совместно с исходным сырьем в каталитическую реакционную зону для операции в неподвижном слое. Для операции каталитической дистилляции или экстрактивной каталитической дистилляции растворитель вводят в надлежащую позицию верхней половины колонны. Другой альтернативой осуществления операции является промывка время от времени катализаторов растворителем при надлежащей температуре от 70 (21,1°С) до 450°F (232,2°С) и давлении от 0 до 500 psig, предпочтительно в присутствии водорода. Другим альтернативным вариантом является то, что селективное гидрирование проводят периодически в присутствии избытка водорода в каталитической реакционной зоне в количестве большем, чем нормально требуется для данного периода времени, например нескольких дней, даже если извлечение 1,3-бутадиена за этот период несколько ниже.

Контрольный Пример 1 (обычный катализатор)

Промышленный никелевый катализатор (28 вес.% никеля на оксиде алюминия) испытывали в удалении С4 ацетиленовых примесей в неочищенном сырьевом потоке селективным гидрированием. 40 г катализатора смешивали с 60 мл стеклянных шариков 3-мм диаметра и загружали в вертикальный нержавеющий реактор для восходящего потока (1 дюйм в диаметре х 20 дюймов в длину) с неподвижным слоем. Катализатором является трехдольный экструдат 1,2 мм в диаметре х 2-5 мм. Для контроля температуры реактора устанавливали две термопары на каждом конце слоя катализатора. Катализатор поставляется производителем в активированной и пассивированной форме. Катализатор имеет следующие физические свойства: площадь поверхности по БЭТ 113 м 2 /г, общий объем пор по адсорбции азота 0,438 см 3 /г и средний диаметр пор 151 Å. Катализатор реактивировали при 250°F (121,1°С) в потоке газа 300 см 3 /мин, содержащем 33 об.% водорода в азоте, в течение 1,5 ч и затем при 575°F (301,7°С) в течение 5 ч, пропуская 350 см 3 /мин чистого водорода. Реактор охлаждали до температуры окружающей среды. Селективное гидрирование ацетиленовых примесей в неочищенном сырьевом потоке проводили при скорости подачи углеводородного сырья 6 мл/мин и водорода 44 см 3 /мин в начале реакции и до 21 см 3 /мин в конце при постоянном давлении в реакторе 108 psig. Сырье содержало 3500 вес. м.д. С4 ацетиленов (2940 м.д. винилацетилена и 560 м.д этилацетилена), 330 м.д. метилацетилена, 66,60 вес.% 1,3-бутадиена, 280 вес. м.д 1,2-бутадиена, 160 вес. м.д. пропадиена, 21,6 вес.% бутенов и т.д. Из-за экзотермической теплоты гидрирования температура в конце слоя катализатора была выше, чем в начале. Гидрирование проводили при постоянной температуре 120°F (48,9°С). Полная конверсия С4 ацетиленов требовала 44 см 3 /мин или больше водорода; при полной конверсии извлечение 1,3-бутадиена составило 96,8%. Результат испытаний показан на чертеже. Физические свойства промышленных катализаторов приведены в Таблице 1.

Пример 2 (изобретение)

Никелевый катализатор получали, чтобы продемонстрировать лучшие каталитические характеристики данного изобретения по сравнению с обычным никелевым катализатором Примера 1 (контроль). Катализатор получали двумя пропитками. Гамма-оксид алюминия, использованный для получения никелевого катализатора, представляет собой сферы диаметром 1,68 мм, полученные методом масло-капельного гелирования. Физические свойства оксида алюминия, прокаленного при 750°С в течение 3 часов, суммированы в Таблице 1. Более примерно 95% пор в этом оксиде алюминия имеют диаметр больше 200 Å. Рентгенография этого материала показывает, что это гамма-оксид алюминия. После дополнительного прокаливания при 1100°С в течение 3 ч на воздухе средний диаметр сфер оксида алюминия уменьшался с 1,68 до 1,45 мм. Физические свойства этого прокаленного оксида алюминия приведены в Таблице 1 и его используют как носитель для никеля. Рентгенография этого прокаленного оксида алюминия указывает на тета-оксид алюминия с примесью дельта-оксида алюминия.

Раствор нитрата никеля для первой пропитки получали растворением 103 г NiNO 3 x 6H 2 O в 285 г воды. 300 г прокаленного оксида алюминия помещали в роторный пропитыватель и выливали на него раствор нитрата никеля. После сушки содержимого в роторном пропитывателе при примерно 200°С вдуванием горячего воздуха в роторный пропитыватель высушенный продукт прокаливали при 350°С 2 часа. Другой никелевый раствор готовили для второй пропитки растворением 56 г NiNO 3 x 6H 2 O в 285 г воды. Вторую пропитку проводили также как и первую. Высушенный продукт пропитки прокаливали при 380°С 2 часа. Количество никеля, нанесенного на алюмооксидный носитель, составляет 9,67 вес.% в расчете на полное количество использованного нитрата никеля. Физические свойства этого никелевого катализатора приведены в Таблице 1.

Таблица 1
Носитель,

прокаленный

при 750°С

Носитель,

прокаленный

при 1100°С

Ni катализатор,

прокаленный при 1100°С

Промышленный Ni катализатор
КОП, г/см 3 0,48 0,62 0,71 0,86
БЕТ, м 2 /г 145,0 65,6 66,0 113
Общий объем пор по азоту, см 3 /г 0,925 0,713 0,626 0,438
Средний диаметр пор, Å 216 449 383 151
для пор радиусом меньше 493 Å при P/p o =0,9801

40 г катализатора смешивали с 60 мл стеклянных шариков 3-мм диаметра и загружали в вертикальный нержавеющий реактор для восходящего потока (1 дюйм в диаметре х 20 дюймов в длину) с неподвижным слоем. Катализатором является трехдольный экструдат 1,2 мм в диаметре х 2-5 мм. Для контроля температуры реактора устанавливали две термопары на каждом конце зоны катализатора. Катализатор активировали при 250°F (121,1°С) в потоке газа 300 см 3 /мин, содержащем 33 об.% водорода в азоте, в течение 1,5 ч и затем при 670 (354,4°С) и 770°F (410,0°С) по 3 ч при каждой температуре, пропуская 350 см 3 /мин чистого водорода. Реактор охлаждали до температуры окружающей среды. Селективное гидрирование ацетиленовых примесей в том же сырьевом потоке, что и в Контрольном Примере 1, проводили при скорости подачи углеводородного сырья 6 мл/мин и водорода 31 см 3 /мин в начале реакции и до 17 см 3 /мин в конце при постоянном давлении в реакторе 108 psig и температуре 120°F (48,9°С) в конце слоя катализатора. Из-за экзотермической теплоты гидрирования температура в конце слоя катализатора была выше, чем в начале.

Гидрирование проводили при постоянной температуре 120°F. Полная конверсия С4 ацетиленов требовала 33 см 3 /мин водорода; при полной конверсии извлечение 1,3-бутадиена составило 97,7%. Результат испытаний показан на чертеже. Хорошо видны лучшие характеристики катализатора по изобретению по сравнению с характеристиками катализатора Контрольного Примера.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Селективный катализатор гидрирования для селективного гидрирования ацетиленовых примесей в неочищенных олефиновых или диолефиновых потоках, содержащий только никель или никель и один или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, нанесенных на носитель, представляющий оксид алюминия, имеющий следующие физические свойства: площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля.

2. Селективный катализатор гидрирования по п.1, в котором указанный оксид алюминия прокаливают в температурном интервале от примерно 750 до примерно 1200°С.

3. Селективный катализатор гидрирования по п.2, в котором указанный оксид алюминия имеет, по меньшей мере, 30% пор диаметром больше 100 Å и общий объем пор от примерно 0,405 до примерно 0,9 см 3 /г и КОП (кажущуюся объемную плотность) от примерно 0,35 до примерно 0,75 г/см 3 .

4. Селективный катализатор гидрирования по п.3, в котором указанный оксид алюминия имеет, по меньшей мере, 50% пор диаметром больше 100 Å.

5. Селективный катализатор гидрирования по п.1, в котором указанный оксид алюминия содержит меньше примерно 2 вес.% щелочного металла.

6. Селективный катализатор гидрирования по п.1, в котором указанный оксид алюминия является переходным оксидом алюминия, содержащим кристаллические дельта-, каппа-, тета- и альфа-формы или их смеси.

7. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,005 до примерно 10 вес.% меди.

8. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 5 вес.% рения.

9. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,01 до примерно 2 вес.% палладия.

10. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 10 вес.% цинка.

11. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 7 вес.% кальция.

12. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 7 вес.% магния.

13. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 10 вес.% молибдена.

14. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,05 до примерно 7 вес.% висмута.

15. Способ получения селективного катализатора гидрирования для селективного гидрирования ацетиленовых примесей в неочищенных олефиновых или диолефиновых потоках, включающий пропитку носителя, представляющего оксид алюминия, имеющего следующие физические свойства: площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å, растворимыми солями только никеля или никеля и одного или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, из одного или больше растворов с получением пропитанного носителя, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля.

16. Способ получения селективного катализатора гидрирования по п.15, в котором пропитанный носитель сушат и прокаливают при температуре от 200 до 600°С.

17. Способ получения селективного катализатора гидрирования по п.15, в котором пропитанный носитель сушат и прокаливают при температуре от 250 до 500°С.

18. Способ селективного гидрирования ацетиленовых соединений, включающий контактирование исходного сырья, содержащего ацетиленовые соединения и другие ненасыщенные соединения, с катализатором, содержащим только никель или никель и один или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, нанесенных на носитель, представляющий оксид алюминия, имеющий следующие физические свойства: площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å, в условиях селективного гидрирования и выделение продукта, имеющего меньше ацетиленовых соединений, чем указанное исходное сырье, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля.

19. Способ селективного гидрирования ацетиленовых соединений по п.18, в котором указанный оксид алюминия прокаливают в температурном интервале от примерно 750 до примерно 1200°С.

20. Способ селективного гидрирования ацетиленовых соединений по п.19, в котором указанный оксид алюминия имеет, по меньшей мере, 30% пор диаметром больше 100 Å и общий объем пор от примерно 0,405 до примерно 0,9 см 3 /г и КОП (кажущуюся объемную плотность) от примерно 0,35 до примерно 0,75 г/см 3 .

21. Способ селективного гидрирования ацетиленовых соединений по п.20, в котором указанный оксид алюминия имеет, по меньшей мере, 50% пор диаметром больше 100 Å.

22. Способ селективного гидрирования ацетиленовых соединений по п.21, в котором указанный оксид алюминия содержит меньше примерно 2 вес.% щелочного металла.

23. Способ селективного гидрирования ацетиленовых соединений по п.21, в котором указанный оксид алюминия является переходным оксидом алюминия, содержащим кристаллические дельта-, каппа-, тета- и альфа-формы или их смеси.

24. Способ селективного гидрирования ацетиленовых соединений по п.18, в котором растворитель подают совместно с исходным сырьем.

25. Способ селективного гидрирования ацетиленовых соединений по п.24, в котором указанный растворитель выбирают из группы, состоящей из циклогексана, метилциклогексана, бензола, толуола, алкилнитрилов, фурфураля, диметилацетамида, диметилформамида, метилпирролидона, формилморфолина, простых эфиров и их смесей.


Катализаторы, содержащие никель, находят широкое применение, в частности в таких реакциях как гидрирование, алкилирование, гидроалкилирование, в процессах крекинга и др. Эти катализаторы обладают высокой активностью, которая в процессе работы падает. Через какое-то время активность катализатора снижается до такой степени, что его дальнейшее использование в промышленном процессе становится нецелесообразным.
В литературе описано большое количество никелевых катализаторов и их модификаций. Эти катализаторы применяются в реакциях гидрирования, в частности при гидрировании ненасыщенных органических соединений. Катализаторы, применяемые в процессах гидроалкилирования, помимо никеля обычно содержат другие металлы, например вольфрам. В никелевых катализаторах, применяемых при крекинге, часто содержатся молибден и другие элементы.
Никель является дорогостоящим металлом, а отходы, содержащие его, представляют опасность для окружающей среды. Ввиду этого большое внимание уделяется разработке методов регенерации отработанных катализаторов и (или) выделения никеля из отработанных катализаторов и других никельсодержащих отходов.
Cm. также «Кобальт из отработанных катализаторов», в частности патент США 145397.
Cm. также «Триарилбораны из отработанных катализаторов {I].
Процесс, разработанный Ю. Хираяма (патент США 4 029495, 14 июня 1977 г.), предусматривает нагревание катализатора на носителе, загрязненного органическими соединениями, или смеси такого катализатора с флюсом во вращающейся или качающейся печи или в градиентной печи. В результате нагревания и перемешивания сырье спекается или переходит в полурасплавленное состояние. После этого смесь отверждают, охлаждают и распыляют. Тяжелые металлы выделяют путем гравитационного обогащения или магнитного разделения. В другом варианте спекшуюся или полурасплавленную смесь можно подвергнуть плавлению при высокой температуре с последующим разделением компонентов на основе различия в их плотностях.
Схема процесса представлена на рис. 124. Ниже приводится конкретный пример осуществления процесса. 100 частей отработанного катализатора, содержащего 50 % масел и (или) жиров, 35 % кизельгура и 15 % никеля, смешивают с 5 частями щелочи (пластинки). Из смеси формуют гранулы диаметром 30 и высотой 50 мм. Гранулы помещают в предварительно нагретую вращающуюся печь и плавят в восстановительной атмосфере при 1000-1300 0C. Смесь выгружают из печи, охлаждают и измельчают. Шлак превращают в мелкий порошок и выделяют порошкообразный никель с помощью магнитного сепаратора; степень выделения никеля 95 %. Полученный никель имеет следующий состав, % : С 0,3; P 0,024; S 0,502; SiO2 (свободная) 8; Al2O3 0,5 %; Ni 97.
Процесс, разработанный В. Д. Атчисоном, А. Энглишем и Д. Хальтером (патент США 4 120698, 17 октября 1978 г.; фирма «Зе Ханна Майнинг Компании), включает окисление смеси отработанного катализатора и никелевой руды при повышенных температурах; плавление окисленной смеси; восстановление полученного расплава и выделение никеля.
Этот экономичный метод предназначен для увеличения содержания никеля и (или) получения ферроникеля из никельсодержащих руд с использованием отходов, содержащих никель, таких как отработанные никелевые катализаторы. Процесс позволяет выделять никель из отработанных катализаторов, используя энтальпию органических примесей, присутствующих в сырье.
Схема процесса представлена на рис. 125. Никелевую руду и отработанный катализатор подают в смеситель А по линиям / и 5 соответственно. Руда обычно по-

I - флюс; 2 - катализатор; 3 - смеситель; 4 - мялка; 5 - шнековый питатель; 6 - печь; 7 - обработка отходящих газов; 8 - измельчение; 9 - пылесборник; 10 - шаровая мельница; 11 - магнитный сепаратор грубого разделения; 12 - шлак; 13 - магнитный сепаратор четкого разделения; 14 - тяжелые металлы для производства сплавов; 15 - тяжелый металл высокой чистоты Рис. 125. Схема процесса извлечения никеля из катализаторов с одновременным производством ферроникеля
материале содержатся горючие примеси; при этом происходит спонтанное увеличение температуры в обжиговой печи. В результате этого может быть уменьшено количество топлива, подаваемого извне, что позволяет снизить расходы на выделение никеля. Различные количества никельсодержащих отходов можно смешивать с никелевой рудой как в смесителе, так и в обжиговой печи. Как правило приготовляют смеси, в которых содержится I-10 % никельсодержащих отходов.
Окисленную смесь по линии 9 направляют в плавильную печь С, где ее нагревают до температуры 1600-1700 °С. Для плавления используют электрические печи. Расплавленную руду по линии 10 подают в реактор восстановления Д; последний представляет собой один или несколько больших ковшей. По линии 11 в реактор подают восстановитель. Смесь энергично перемешивают для улучшения контакта между восстановителем и расплавленной рудой. В качестве восстановителей могут быть использованы, например, кремний или ферросилиций. Можно также использовать углерод, особенно при применении печей с погружением. Обычно используют
ферросилиций 45-55 % Si. По окончании процесса перемешивание прекращают. Никель оседает на дне реактора, а шлак сгребают с поверхности и выводят по линии 12. Шлак направляют либо на гранулирование по линии 14, либо на переработку с целью выделения компонентов по линии 15.
В процессе восстановления происходит накопление никеля в ковше; его выводят оттуда полиции 13. Примеси, присутствующие в получаемом никеле, такие как фосфор, удаляют на последующих стадиях очистки в виде шлаков. Если в процессе используются железоникелевые руды, например латерит, то в результате получается ферроникель. При добавлении никельсодержащих отходов, таких как отработанные катализаторы, в смеситель А и (или) обжиговую печь В увеличивается количество получаемого ферроникеля и (или) ферроникеля с повышенным содержанием никеля. Увеличение производительности зависит от природы и количества добавляемых никельсодержащих отходов. Как правило в ферроникеле содержится 45-55 % Ni. При добавлении никельсодержащих отходов количество никеля н^получаемом ферроникеле может быть увеличено на 4-5 % .
При использовании низкопроцентных руд может быть получен ферроникель с обычным содержанием никеля.
В промышленных процессах, в которых используются соединения никеля, часто образуются отходы с низким содержанием никеля, из которых он все же может быть извлечен. Типичным примером является каталитический процесс производства акрилатов с использованием карбонила никеля. В сточных водах этого процесса содержится ~ 4% Ni. Для повышения экономичности процесса этот никель необходимо выделять. Аналогичным образом извлечение никеля необходимо и в случае других процессов, в которых образуются отходы с низким содержанием никеля.
Выделение никеля из таких материалов связано с рядом проблем. Поскольку никель присутствует в малых количествах, необходимо достичь возможно более полной степени извлечения. Так как в материале содержатся другие элементы, например железо, медь и сера, а также различные органические соединения, то никель необходимо отделять от них. Никель должен быть выделен в таком виде, в котором его можно сразу использовать или хотя бы в виде, требующем минимальной дополнительной обработки. Все реагенты, используемые в процессе выделения, должны быть регенерируемыми, если они не расходуются в процессе полностью. Стоимость процесса выделения должна быть достаточно низкой, по крайней мере сравнимой со стоимостью никеля аналогичного качества, имеющегося в продаже. В процессе выделения не должно образовываться отходов, загрязняющих атмосферу или водоемы. В идеале процесс должен быть непрерывным, с рециклом всех компонентов.
Всем этим требованиям удовлетворяет процесс, разработанный М. С. Брауном, Р. М. Барчем и Г. М. Бартом (патент США 4 131641, 26 декабря 1978 г.; фирма «Ром энд Хаас Компани»), Схема этого процесса показана на рис. 126.
Сточные воды, содержащие никель, I подают в фильтрационный аппарат 2, где после фильтрования остаток промывают водой 3. Промывку проводят до получения в остатке постоянной максимальной концентрации никеля. При этом в промывных водах будет содержаться постоянная минимальная концентрация растворимых компонентов, таких как соединения меди, железа и др. Остаток от фильтрования по линии 4 направляют в резервуар 5, где его суспендируют в подаваемом туда же концентрированном растворе хлорида никеля. Последний частично рециркулируется из системы по линиям 21 и 22.
" ’t Полученную суспензию по линии 6 подают в реактор 9. В реактор последовательно добавляют раствор окислителя но линии 7, раствор для абсорбции газов, насыщенный хлористым водородом, по линии 18 и безводный хлористый водород по линии 8. Реакция протекает с выделением тепла и заканчивается в тот момент, когда
смесь приобретает зеленую окраску. Перед изменением окраски происходит увеличение скорости возрастания температуры. Время реакции можно регулировать путем изменения скорости подачи хлористого водорода и скорости отвода хлористого водорода в абсорбер для отходящих газов 17. Углекислый газ и избыток хлористого водорода из реактора через скруббер по линии 11 подается в абсорбер 17, откуда углекислый газ выбрасывается в атмосферу.
После охлаждения реакционной смеси устанавливают величину pH = 0,3-г-2,5, добавляя основание по линии 10. После этого смесь по линии 12 подают на фильтр 13. Осадки, содержащие железо и серу, удаляют, а фильтрат по линии 19 подают на фильтр 20 для окончательной фильтрации и установления pH.
На этой стадии нз получаемого концентрированного раствора хлорида никеля можно удалить медь, использовав подходящий комплексующий агент. Конечный продукт выводят по линии 21, часть раствора хлорида иикеля по линии 22 возвращается в резервуар 5 для приготовления суспензии. Остаток от фильтрования промывают водой 14, жидкую фазу по линии 16 направляют в абсорбер 17, где ее используют для промывки избыточного хлористого водорода, выходящего из реактора 9.
Описанный процесс позволяет чрезвычайно эффективно проводить выделение никеля из отходов промышленности с низким содержанием никеля. При непрерывном проведении процесса из системы выводятся только промывная вода со стадии первичной промывки и промытый остаток от фильтрования.

аммиака до окиси азота NО в одном из главных процессов производства азотной кислоты. Катализатор здесь предстает в виде сетки из платиновой проволоки диамет ром 0,05-0,09 мм. В материал сеток введена добавка родия (5-10%). Используют и тройной сплав - 93% Pt, 3% Rh и 4% Pd. Добавка родия к платине повышает механическую прочность и увеличивает срок службы сетки, а немного удешевляет катализатор и немного (на 1-2%) повышает его активность. Срок службы платиновых сеток - год-полтора. После этого старые сетки отправляют на аффинажный завод на регенерацию и устанавливают новые. Производство азотной кислоты потребляет значительные количества платины.

Платиновый катализатор ускоряет многие другие практически важные реакции: гидрирование жиров, циклических и ароматических углеводородов, олефинов, альдегидов, ацетилена, кетонов, окисление SО 2 в SО 3 в сернокислотном производстве. Их используют также при синтезе витаминов и некоторых фармацевтических препаратов. Известно, что в 1974 г. на нужды химической промышленности в США было израсходовано около 7 ,5 т платины.

Не менее важны платиновые катализаторы в нефтеперерабатывающей промышленности. С их помощью на установках каталитического риформинга получают высокооктановый бензин, ароматические углеводороды и технический из бензиновых и лигроиновых фракций нефти. Здесь платину обычно используют в виде мелкодисперсного порошка, нанесенного на окись алюминия, керамику, глину, уголь. В этой отрасли работают и другие катализаторы ( , ), но у платиновых - неоспоримые преимущества: большая активность и долговечность, высокая эффективность. Нефтеперерабатывающая промышленность США закупила в 1974 г. около 4 т платины.

Еще одним крупным потребителем катализатора стала автомобильная промышленность, которая, как это ни странно, тоже использует именно каталитические свойства этого металла - для дожигания и обезвреживания выхлопных газов.

Четвертым и пятым по масштабам потребления покупателями платины в США были электротехника и стекольное производство.

Стабильность электрических, термоэлектрических и механических свойств платины плюс высочайшая коррозионная и термическая стойкость сделали этот металл незаменимым для современной электротехники, автоматики и телемеханики, радиотехники, точного приборостроения. Из платины делают электроды топливных элементов. Такие элементы применены, например, на космических кораблях серии «Аполлон».

Из сплава платины с 5-10% родия делают фильеры для производства стеклянного волокна. В платиновых тиглях плавят оптическое , когда особенно важно ничуть не нарушить рецептуру.

В химическом машиностроении и ее служат превосходным коррозионностойким материалом. Аппаратура для получения многих особо чистых веществ и различных фторсодержащих соединений изнутри покрыта платиной, а иногда и целиком сделана из нее.

Очень незначительная часть платины идет в медицинскую промышленность.Из платины и ее сплавов изготавливают хирургические инструменты, которые, не окисляясь, стерилизуются в пламени спиртовой горелки; это преимущество особенно ценно при работе в полевых условиях. платины с палладием, серебром, медью, цинком, никелем служат также отличным материалом для зубных протезов.

Спрос науки и техники на платину непрерывно растет и далеко не всегда бывает удовлетворенным. Дальнейшее изучение свойств платины еще больше расширит области применения и возможности этого ценнейшего металла.

«СЕРЕБРИШКО»? Современное название элемента № 78 происходит от испанского слова plata - . Название «платина» мож но перевести как «серебришко» или «сребрецо».

ЭТАЛОН КИЛОГРАММА, Из сплава платины с иридием в нашей стране наготовлен эталон килограмма, представляющий собой пря мой цилиндр диаметром 39 мм и высотой тоже 39 мм. Он хранится в Санкт-Петербурге (Ленинграде), во Всесоюзном научно-исследовательском инсти туте метрологии им. Д. И. Менделеева. Раньше был эталоном и платино-иридиевый метр.

ПЛАТИНЫ. Сырая -это смесь различных минералов платины. Минерал поликсен содержит 80-88% Pt и

9-10% Fe; купроплатина - 65-73% Pt, 12-17% Fe и 7,7-14% Сu; в никелистую платину вместе с элементом № 78 входят , и . Известны также природные платины толь ко с палладием или только с иридием - прочих платиноидов следы. Есть еще и немногочисленные - соединения платины с серой, мышьяком, сурьмой. К ним относятся PtAs 2 PtS, брэггит (Pt, Pd, Ni)S.

САМЫЕ КРУПНЫЕ. Самые крупные самородки платины, демонстрируемые на выставке Алмазного фонда Россия , весят 5918 ,4 и 7860,5 г.

ПЛАТИНОВАЯ ЧЕРНЬ. Платиновая чернь - мелкодисперсный порошок (размеры крупинок 25-40 мкм) металлической платины, обладающий высокой каталитической активностью. Ее получают, действуя формальдегидом или другими восстановителями на раствор комплексной гексахлорплатиновой кислоты Н 2 [РtСl 6 ].

ИЗ «СЛОВАРЯ ХИМИЧЕСКОГО», ИЗДАННОГО В 1812 ГОДУ. «Профессор Снядецкий в Вильне открыл в платине новое металлическое существо, которое названо им Вестий»…

«Фуркруа читал в Институте сочинение, в коем извещает, что содержит , и металлическое существо, доселе еще неизвестное»…

«Золото хорошо соединяется с платиною, но когда количество сей последней превышает 1 к 47 , белеет , не умножая чувствительно тяжести своей и тягучести. Испанское правительство, опасавшееся сего состава, запретило выпуск платины, потому что не знало средств доказать подлога»-.

ОСОБЕННОСТИ ПЛАТИНОВОЙ ПОСУДЫ. Казалось бы, посуда из платины в лаборатории пригодна на все случаи жизни, но это не так. Как пи благороден этот тяжелый драгоценный металл, обра щаясь с ним, следует помнить, что при высокой температуре пла тина становится чувствительной к многим веществам и воздей ствиям. Нельзя, например, нагревать платиновые тигли в восстановительном и тем более коптящем пламени: раскаленная платина растворяет и от этого становится ломкой. В платиновой посуде не плавят : возможно образование относительно легкоплавких сплавов и потери драгоценной платины. Нельзя так же плавить в платиновой посуде перекиси металлов, едкие щелочи, сульфиты и тиосульфаты:

Скелетные катализаторы используют в процессах гидрирова­ния Сахаров, жиров, фурфурола, многоядерных хинонов и т. д. Кроме того, они являются составной частью электродов низко­температурных топливных элементов, предназначенных для пре­образования химической энергии в электрическую . Материалами для получения скелетных контактов служат двух - или многокомпонентные сплавы каталитически активных метал­лов с такими веществами, которые можно частично или полностью удалить при обработке растворами сильных электролитов, от­гонке в вакууме или других операциях, основанных на различии их физико-химических свойств. По мере удаления из сплава рас­творимых компонентов происходит перегруппировка атомов оста­ющегося металла в свойственную ему кристаллическую решетку. Так, при выщелачивании АІ из Ni-Аі-сплава атомы никеля пере­страиваются в кубическую гранецентрированную решетку. После удаления из сплава растворимого (например, в щелочи) компо­нента получается почти чистый активный металл в виде мельчай­шего порошка . К каталитически активным относятся пере­ходные металлы; к неактивным - сера, фосфор, алюминий, крем­ний, магний, цинк и ряд других веществ.

Наиболее распространены катализаторы из сплавов никеля с алюминием. Они отличаются высокой активностью, простотой приготовления, хорошей теплопроводностью и высокой механи­ческой прочностью. Эти катализаторы пирофорны, поэтому их

Хранят, транспортируют и работают с ними под слоем жидкости (вода, спирт, метилциклогексан и другие).

В промышленности используют два типа скелетных никелевых катализаторов - катализатор Бага и никель Ренея (пат. США 1563787, 1628191, 1915473). Оба получают из сплава Ni с А1, однако, если никель Ренея представляет собой мелкодисперсный порошок, состоящий из чистого никеля, то ка­тализатор Бага - кусочки никель-алюминиевого сплава (65- 75 % Ni и 35-25 % А1).

Исходные сплавы получают чаще всего пирометаллургическими способами - сплавлением компонентов или алюмотермией. В пос­леднее время используют методы порошковой металлургии - спекание предварительно спрессованных смесей никелевых и алюминиевых порошков в восстановительной или инертной атмо­сфере при 660-700 °С. Реакции между двумя твердыми телами с образованием новой твердой фазы включают процесс диффузии, поскольку реагирующие вещества разделяются образующимся продуктом реакции . Реагирующие вещества сохраняют по­стоянную активность с обеих сторон реакционной поверхности раздела фаз, в связи с чем скорость переноса материала опреде­ляется скоростью нарастания толщины диффузионного слоя про­дукта и выражается формулой

Здесь б-толщина диффузионного слоя продукта; т - время; D - коэф­фициент диффузии; В - постоянная.

Из различных типов печей, пригодных для получения сплава, лучшими являются высокочастотные печи с автоматическим пере­мешиванием компонентов, позволяющие получать катализатор высокого качества.

Для получения активных катализаторов большое значение имеют способ приготовления и состав сплава. При изготовлении никелевого катализатора наиболее приемлемы сплавы, содержа­щие от 40 до 60 % (масс.) активного металла. Повышение содер­жания никеля более 60 % затрудняет разложение сплава щелочью.

Начальные стадии для катализатора Бага и никеля Ренея одинаковы; расплавляют АІ примерно при 660 °С, повышают температуру до 900 - 1200 °С и выдерживают расплав при этой температуре некоторое время, необходимое для удале­ния из металла газов и солей. Далее в расплав вносят никель, при этом температура поднимается до 1900 °С за счет теплоты образования сплава. В процессе сплавления металлов наблюдается смещение их внешних электронных уровней, с чем связывают про - мотирующий эффект вводимой добавки (А1). Особое внимание должно быть обращено на правильный выбор условий охлаждения сплава. При медленном остывании образуется мелкокристалличе­ская структура, что способствует получению (после удаления А1) каталитически активного металла в высокодисперсном состоя­нии. Быстрое же охлаждение благоприятствует образованию крупнокристаллической структуры сплава.

Полученный сплав состоит из Ni3AI, NiAI, Ni2AI3, NiAl3. Считают, что наиболее активные катализаторы дают соединения NiAI 3 и Ni2Al3. Формирование катализатора из Ni2Al3 идет через так называемую скелетную стадию. Часть скелета распадается с образованием мелких частиц никеля. Катализатор же из NiAI3 формируется по растворно-осадительному механизму. В этом слу­чае вместо бидисперсного конгломерата из Ni и недоразрушенного Ni2Al3 получается широкий набор частиц различных диаметров.

Охлажденный катализатор подвергают дроблению. При рав­ных соотношениях Ni и AI сплав хрупок и легко измельчается. С повышением содержания Ni он становится более прочным и дробится с трудом. Для катализатора Бага сплав дробят на куски размером 3-5 мм, для никеля Ренея - до мелкой крошки.

Никель Ренея в промышленных условиях получают в откры­тых аппаратах, снабженных мешалкой и паровой рубашкой . В аппарат заливают 20-30 % раствор NaOH в количестве, превышающем теоретически требуемое для растворения алюми­ния, постепенно вносят измельченный сплав, включают мешалку и ведут процесс выщелачивания при 120 °С, поддерживая постоян­ным объем реагентов. Повышение температуры выщелачивания до 160 °С приводит к увеличению степени дисперсности никеля Ренея. С ростом температуры выщелачивания удельная площадь поверхности катализаторов из NiAl3 монотонно понижается, а из Ni2Al3, наоборот, увеличивается, достигая максимального значения при 100 °С . О количестве выщелоченного алюми­ния судят по объему выделившегося водорода: 2А1 + 2NaOH + 2НаО = 2NaA102 + ЗН2.

Пересчет на сухой газ при нормальных условиях проводят по формуле:

T>0 = 273 (P-PHjO)/. (3.51)

Здесь Gcn - количество сплава, взятое на выщелачивание.

Активность скелетных катализаторов связана с наличием в них водорода в физически адсорбированном и растворенном состояниях . Содержание водорода зависит от температуры выщелачивания:

Температура выщелачивания, °С... . 50 80 100

Объем Н2, см3 на 1 г катализатора. . . 470 160-170 140

Активность, селективность и устойчивость катализаторов за­висят от состояния адсорбированного ими водорода. Важную роль при этом играет выбор метода сушки легкоокисляющихся катали­заторов, в частности скелетного никеля. Рекомендуется тщатель­ная отмывка катализаторов от воды метанолом или другими спиртами алифатического ряда. Наилучшей является сушка ка­тализаторов от воды при низких давлениях и температурах.

После прекращения выщелачивания большую часть раствора сливают, осадок отмывают от щелочи и в виде водной суспензии переводят в специальную емкость. В последнюю добавляют ми­неральное масло, и полностью удаляют воду нагреванием в ва­кууме. Готовый катализатор хранят и транспортируют в виде масляной суспензии. Регенерацию никеля Ренея не производят, срок службы этого катализатора невелик; он быстро отравляется сернистыми, кислородными и азотистыми соединениями. Ка­тализатор Бага можно регенерировать дополнительным выщела­чиванием А1. На скелетных никелевых контактах процессы идут примерно при 100-120 °С и давлении от 2 до 8 МПа в жидкой фазе. Широкие возможности для оптимизации характеристик катализатора Бага, никеля Ренея дает расширение ассортимента неблагородных компонентов исходных сплавов.