Высадка на комету. Для чего ученые произвели высадку зонда на поверхность кометы? Космическая миссия Rosetta достигла своей кульминации Рельеф и внутренняя структура

По всем признакам мы вступили в эпоху новых открытий. Многие в прошлом году с замиранием сердца следили за миссией «Розетта». Посадка на комету, первая в истории, была сложнейшей операцией, как и вся программа в целом. Однако возникшие трудности не умаляют значение как самого события, так и тех данных, которые уже добыл и все еще поставляет космический зонд. Зачем же нужна была высадка на комету и какие результаты получили астрофизики? Об этом и пойдет речь ниже.

Главная тайна

Начнем издалека. Одна из основных задач, стоящих перед всем научным миром - понять, что способствовало Со времен Античности на эту тему высказывалась масса гипотез. Одна из современных версий гласит, что не последнюю роль тут сыграли кометы, во множестве падавшие на планету в период ее формирования. Считается, что они могли стать поставщиками воды и органических молекул.

Свидетельства начала

Подобная гипотеза сама по себе прекрасно обосновывает интерес ученых, от астрономов до биологов, к кометам. Однако есть и еще несколько любопытных моментов. Хвостатые несут сквозь пространство достаточно подробную информацию о том, что происходило на самых ранних этапах формирования Солнечной системы. Именно тогда и образовалось большинство комет. Таким образом, высадка на комету дает возможность буквально изучить материю, из которой формировался наш кусочек Вселенной больше четырех миллиардов лет назад (и никакой машины времени не надо).

Кроме того, изучение движения кометы, ее состава и поведения при сближении с Солнцем дает огромное о подобных космических объектах, позволяет проверить массу предположений и научных гипотез.

История вопроса

Естественно, хвостатые «путешественники» уже изучались при помощи космических аппаратов. Было совершено семь пролетов мимо комет, в процессе которых делались фотоснимки, собиралась определенная информация. Это были именно пролеты, поскольку длительное сопровождение кометы - дело сложное. В 80-е в роли добытчиков подобных данных выступали американо-европейский аппарат ICE и советская «Вега». Последняя из таких встреч произошла в 2011 году. Тогда данные о хвостатом космическом объекте собрал аппарат Stardust.

Предыдущие исследования дали ученым массу информации, однако для понимания специфики комет и ответа на многие из названных выше вопросов этого недостаточно. Постепенно ученые пришли к осознанию необходимости достаточно смелого шага - организации полета космического аппарата к комете с последующей высадкой зонда на ее поверхность.

Уникальность миссии

Для того чтобы прочувствовать, насколько высадка на комету непростая операция, нужно понять, что вообще представляет собой это Оно несется сквозь пространство на огромной скорости, достигающей иногда нескольких сотен километров в секунду. При этом хвост кометы, образующийся при приближении тела к Солнцу и столь красиво выглядящий с Земли, представляет собой смесь газа и пыли. Все это сильно осложняет не только посадку, но и движение параллельным курсом. Необходимо уравнять скорость аппарата со скоростью объекта и выбрать нужный момент для сближения: чем ближе комета к Солнцу, тем сильнее выбросы с ее поверхности. И лишь затем может быть осуществлена посадка на комету, которая будет еще осложняться и низкими показателями гравитации.

Выбор объекта

Все эти обстоятельства делали необходимым тщательный подход к выбору цели миссии. Посадка на комету Чурюмова-Герасименко - не первый вариант. Изначально предполагалось, что зонд «Розетта» будет отправлен к комете Виртанена. Однако в планы вмешался случай: незадолго до предполагаемой отправки отказал двигатель у ракеты-носителя «Ариан-5». Именно она должна была вывести «Розетту» в космос. В результате запуск отложили и возникла необходимость в выборе нового объекта. Им и стала комета Чурюмова-Герасименко или 67P.

Этот космический объект был обнаружен в 1969 году и назван в честь первооткрывателей. Он относится к числу короткопериодических комет и делает один оборот вокруг Солнца примерно за 6,6 лет. Ничем особо примечательным 67P не отличается, однако обладает хорошо изученной траекторией полета, не выходящей за орбиту Юпитера. Именно к ней и отправилась «Розетта» 2 марта 2004 года.

«Начинка» космического аппарата

Зонд «Розетта» унес с собой в космос большое количество оборудования, предназначенного для исследований и фиксации их результатов. Среди них и камеры, способные улавливать излучение в ультрафиолетовой части спектра, и аппараты, необходимые для изучения структуры кометы и анализа грунта, и приборы для исследования атмосферы. Всего в распоряжении «Розетты» оказалось 11 научных инструментов.

Отдельно нужно остановиться на спускаемом модуле «Филы» - именно ему предстояло осуществить приземление на комету. Часть высокотехнологичного оборудования размещалась прямо на нем, поскольку была необходима для изучения космического объекта непосредственно после высадки. Кроме того, «Филы» оснащался тремя гарпунами для надежной фиксации на поверхности после того, как его спустит «Розетта». Посадка на комету, как уже говорилось, сопряжена с определенными трудностями. Гравитация тут настолько мала, что при отсутствии дополнительных креплений модуль рискует затеряться в открытом космосе.

Долгий путь

Высадка на комету 2014 года предварялась десятилетним полетом зонда «Розетта». В течение этого времени он пять раз оказывался недалеко от Земли, пролетал рядом с Марсом, встретил два астероида. Великолепные снимки, сделанные зондом в этот период, в очередной раз напоминают о красоте природы и Вселенной в самых разных ее уголках.

Однако может возникнуть логичный вопрос: зачем «Розетта» так долго кружила по Солнечной системе? Понятно, что фотографии и другие данные, собранные в процессе полета, не были его целью, а, скорее, стали приятным и интересным бонусом для исследователей. Цель этого маневра - подойти к комете сзади и сравнять скорость. Результатом десятилетнего полета должно было стать фактическое превращение «Розетты» в спутник кометы Чурюмова-Герасименко.

Сближение

Сейчас, в апреле 2015 года, можно с уверенностью сказать, что высадка зонда на комету в целом прошла удачно. Однако в августе прошлого года, когда аппарат только вышел на орбиту космического тела, это было еще делом ближайшего будущего.

Зонд на комету высадился 12 ноября 2014 года. За посадкой следил практически весь мир. Отстыковка «Филы» прошла удачно. Проблемы начались в момент приземления: не сработали гарпуны и аппарат не смог закрепиться на поверхности. «Филы» дважды отскочил от кометы и только на третий раз смог опуститься, причем он отлетел от места предполагаемой посадки примерно на километр.

В результате модуль «Филы» оказался в зоне, куда почти не проникают необходимые для восполнения энергетического заряда батарей. На случай если посадка на комету произойдет не совсем удачно, аппарат был оснащен заряженным аккумулятором, рассчитанным на 64 часа. Он проработал чуть меньше, 57 часов, но и за это время «Филы» успел сделать практически все, для чего создавался.

Результаты

Посадка на комету Чурюмова-Герасименко позволила ученым получить обширные данные об этом космическом теле. Многие из них еще не обработаны или требуют анализа, однако первые результаты уже представлены широкой общественности.

Изучаемое космическое тело по форме схоже с (высадка на комету предполагалась в район «головы»): две сравнимые по размерам округлые части соединены узким перешейком. Одна из задач, стоявших перед астрофизиками, - понять причину такого необычного силуэта. Сегодня выдвигаются две основные гипотезы: либо это результат столкновения двух тел, либо к формированию перешейка привели процессы эрозии. На данный момент точный ответ не получен. Благодаря исследованиям «Филы» стало лишь известно, что уровень гравитации на комете неодинаков. Самый большой показатель наблюдается в верхней части ядра, а наименьшей - как раз в области «шеи».

Рельеф и внутренняя структура

Модуль «Филы» обнаружил на поверхности кометы различные образования, по виду напоминающие горы и дюны. По своему составу большинство из них представляют собой смесь льда и пыли. Холмы высотой до 3 метров, названные мурашками, на 67P встречаются довольно часто. Ученые предполагают, что они образовались на первых этапах формирования Солнечной системы и могут покрывать поверхности и других подобных небесных тел.

Поскольку зонд на комету опустился не самым удачным образом, ученые опасались начинать запланированное бурение поверхности. Однако его все-таки осуществили. Оказалось, что под верхним слоем располагается другой, более плотный. Вероятнее всего, он состоит изо льда. В пользу этого предположения говорит и анализ вибраций, зафиксированных аппаратом во время посадки. Вместе с тем снимки спектрографов показывают неодинаковое соотношение органических соединений и льда: первых явно больше. Это не сходится с предположениями ученых и ставит под сомнение версию происхождения кометы. Предполагалось, что она образовалась в области Солнечной системы, поблизости от Юпитера. Исследование снимков, однако, опровергает эту гипотезу: судя по всему, 67P сформировалась в поясе Койпера, расположенном за орбитой Нептуна.

Миссия продолжается

Космический аппарат «Розетта», внимательно следивший за деятельностью модуля «Филы» до момента его засыпания, не покинул комету Чурюмова-Герасименко до сих пор. Он продолжает наблюдать за объектом и присылать данные на Землю. Так, в число его обязанностей входит фиксация выбросов пыли и газа, которые увеличиваются по мере приближения кометы к Солнцу.

Ранее было установлено, что основным источником подобных выбросов является так называемая шея кометы. Причиной этого может быть низкая гравитация этой области и возникающий здесь эффект аккумуляции солнечной энергии, отраженной от соседних участков. В марте этого года «Розетта» также зафиксировала выброс пыли и газа, интересный тем, что произошел он на неосвещенной стороне (как правило, такие явления возникают в результате разогрева поверхности, то есть на солнечной части кометы). Все эти процессы и особенности 67P еще предстоит объяснить, пока же сбор данных продолжается.

Первая в истории человечества посадка на поверхность кометы стала результатом труда большого числа ученых, техников, инженеров и проектировщиков на протяжении почти сорока лет. Сегодня миссия «Розетта» признается одним из самых грандиозных событий космической эры. Естественно, что астрофизики не намерены на этом ставить точку. В число амбициозных планов на будущее входит создание спускаемого модуля, который будет в состоянии передвигаться по поверхности кометы, и космического аппарата, способного сблизится с объектом, собрать образцы грунта и вернуться с ними на Землю. В целом удачный проект «Розетта» вдохновляет ученых на все более смелые программы по освоению тайн Вселенной.

Ученые предоставили новую обновленную информацию относительно обломков, крупных кусков, частиц пыли около кометы 67Р/Чурюмова-Герасименко. Исследования касались материала, окружающего это малое небесное тело и были направлены на поиск спутников возле нее.

Начиная с момента своего прибытия к комете 67Р/Чурюмова-Герасименко, зонд Rosetta занимается изучением ее ядра и окружающей среды с помощью различной аппаратуры и оборудования. Одной из ключевых областей является изучение пылевых частиц и других объектов около нее.

Анализ измерений от прибора GIADA, позволяющего анализировать и исследовать пылевые частицы, а также изображений, сделанных камерой OSIRIS, выявили сотни отдельных пылевых объектов, либо связанных с кометой ее притяжением, либо удаляющихся от нее.

На снимках были найдены мелкие объекты, а также гораздо более большие блоки, размером от нескольких сантиметров до двух метров. Стоит сказать, что глыбы до четырех метров были найдены лишь однажды во время миссии НАСА к комете 103P/ Hartley 2 в 2010 году.

Новое исследование изображений основывается на предыдущих изучениях кометной пыли. Ученые, используя специальные методы для выполнения динамических исследований, впервые определили орбиты четырех категорий обломков, самый крупный из которых имел размер до полутора метра в диаметре.

Исследования были основаны на нескольких изображениях этой области, и этого было достаточно для утверждения, что обломки материала движутся по определенной траектории. Однако для понимания того насколько они связаны с кометой, понадобилось сделать сотни снимков в течение длительного периода времени.

Чтобы отследить движение обломков в мелких деталях, ученые наблюдали за кусочком неба камерой OSIRIS, которая позволяет исследовать объекты на больших площадях. Делая снимки с тридцатиминутным интервалом и выдержкой 10.2 секунды каждый, они получили 30 изображений. Изображения были сделаны до 10 сентября 2014г.

Кстати, фотографирование было произведено всего за несколько часов до начала маневра, который был связан с выходом зонда на орбиту вокруг кометы. Расстояние в этот момент до ядра составляло 30 км.

Когда ученые позже проанализировали снимки, они определили четыре категории обломков с размерами от 15 до 50 сантиметров, видных на звездном небе. Было установлено, что они двигаются очень медленно, со скоростью несколько десятков сантиметров в секунду и находятся в пределах от четырех до 17 километров от ядра.

Можно сказать, что ученым удалось впервые определить индивидуальные орбиты таких обломков, находящихся рядом с кометой. Эта информация очень важна для изучения их происхождения и помогает нам понять процессы, связанные с потерей массы такими небесными телами.

На самом деле, три из этих категорий оказались связанными гравитацией с кометой и движутся по эллиптическим орбитам. Впрочем, расстояние, которое проходили мелкие частицы за 30-минутный интервал, было слишком мало, чтобы определить их орбиты, поэтому ученые не исключают, что эти три категории обломков и мелких частиц пыли могут находиться на несвязанных, гиперболических орбитах.

Что касается происхождения обломков, возможно, это относится к тому времени, когда комета последний раз достигала ближайшей точки к Солнцу, проходя перигелий в 2009 году, после чего они откололись от ядра вследствие сильных испарительных процессов. Но поскольку силы газовых струй было недостаточно, чтобы высвободить их от гравитации ядра, они задержались в ее сфере притяжения вместо того, чтобы раствориться в космосе. Возможно, что некоторые из них постоянно находятся возле ядра уже на протяжении длительного времени.

Это исследование доказывает, что от комет могут отделяться такие большие куски материала и, что они также остаются привязанными к ним в течение длительного времени, пока происходит их обращение вокруг Солнца.

С другой стороны, одна из категорий обломков, наверняка, движется по гиперболической траектории, что позволит им в ближайшее время выйти из сферы притяжения кометы и уйти в космическое пространство.

Во время проведения исследований на фотографиях был обнаружен крупный обломок, имевший очень интересную траекторию, которая пересекается с ядром. Ученые высказали предположение, что он незадолго до наблюдений мог отколоться от него. Эта предположение, как и интригует, так вызывает недоумение, поскольку в то время комета находилась еще на достаточно большом расстоянии от Солнца.

Еще несколько наборов изображения были сделаны после того, как в сентябре прошлого года Rosetta вышла на орбиту кометы. Сейчас они анализируются с целью определения и изучения траекторий других обломков. Однако на новых снимках будет практически невозможно восстановить и идентифицировать те же самые обломки из более поздних изображений.

Но, что можно сказать об относительно больших частей кометной пыли, размер которых достигает нескольких десятков метров в поперечнике? Являются ли они спутниками кометы? Ведь такие спутники были обнаружены вокруг множества астероидов и других малых тел в Солнечной системе. Существуют ли какие-либо доказательства наличия таких ‘товарищей’ у 67Р/Ч-Г?

Итальянские ученые провели исследование, чтобы отыскать спутники около кометы. Они использовали изображения, которые были сделаны OSIRIS в июле 2014 года, до прибытия Rosetta, чтобы осмотреть крупномасштабное окружение кометы в высоком разрешении.

После тщательного изучения этих изображений, ученые не обнаружили никаких доказательств спутников вокруг 67Р/Ч-Г. Эти исследования говорят о том, что никаких обломков размером более шести метров не было найдено на расстоянии 20 километров, и ни одного размером более одного метра на расстояниях между 20 и 110 километров от ядра.

Обнаружение такого большого спутника вокруг кометы, возможно, предоставило бы дополнительную информацию относительно происхождения этого малого небесного тела. Однако ученые не исключают, что 67Р/Ч-Г могла иметь такого компаньона в прошлом, и он был потерян, учитывая неблагоприятные условия, в которых происходит жизнь этой кометы.

"Семейство” спутников, астероидов и ядер комет очень разнообразно по своему составу. В него, с одной стороны, входит огромный спутник Сатурна Титан с плотной азотной атмосферой, а с другой -- мелкие ледяные глыбы кометных ядер, большую часть времени проводящие на далёкой периферии Солнечной системы. Серьёзной надежды обнаружить жизнь на этих телах не было никогда, хотя исследование на них органических соединений как предшественников жизни представляет особый интерес.

В последнее время внимание экзобиологов (специалистов по внеземной жизни) привлекает спутник Юпитера Европа. (См. приложение рис.3) Под ледяной корой этого спутника должен быть океан жидкой воды. А где вода -- там жизнь: Расположенное в Антарктиде озеро Восток пользуется повышенным вниманием со стороны исследователей, так как его считают земным аналогом поверхности Европы -- спутника Юпитера. Как утверждают ученые, условия этого озера, покрытого почти четырехкилометровым слоем льда, весьма близки к предполагаемым для океана, обнаруженного под ледяной корой луны Юпитера. До последнего времени возможной причиной возникновения и того, и другого водного образования считалось геотермальное нагревание. Эти водоемы покрыты настолько толстым слоем льда, что за миллионы лет туда не поступал ни атмосферный воздух, ни солнечный свет. Поэтому, если в будущем ученые смогут обнаружить жизнь в озере Восток (в настоящее время бурильные скважины пока еще не достигли жидкого слоя), то это будет служить реальным аргументом в пользу существования жизни и в океане Европы. "Большая часть жизни на поверхности Земли -- на земле или в море -- зависит от фотосинтеза. Первым звеном в пищевых цепях является превращение хлорофиллом солнечного света в химически сохраняемую энергию. Но представьте океан на Европе -- огромный резервуар воды, накрытый километрами льда. Фотосинтез там не работает. Однако, несмотря ни на что, есть другие пути для существования там жизни”, -- сказал Чайба.

Поступающие с космического аппарата "Галилео” данные позволяют предположить существование океана под поверхностными слоями не только Европы, но и других спутников -- Ганимеда и Каллисто. Наличие жидкой воды -- это важнейшая предпосылка для развития жизни, но для ее поддержания необходим еще и источник энергии. Исследователи отмечают, что таким источником обычно являются окислительно-восстановительные реакции. Важным окислителем в земных океанах является кислород, продукт фотосинтеза, но вряд ли он может играть какую-то роль в океанах юпитерианских спутников. Возможно, что окисляющие агенты, наподобие перекиси водорода, могут образовываться в ледяном слое под воздействием частиц высокой энергии из магнитосферы Юпитера. Просачиваясь в океан сквозь ледяной щит, такие вещества могут служить основой для необходимых реакций.

У ученых нет уверенности в том, что такой механизм играет ведущую роль, и поэтому они искали другие возможности для образования в океанах молекулярного кислорода. Одной из них оказался изотоп калий-40, присутствие которого возможно как во льду, так и в воде. Распад атомов калия-40 приводит к расщеплению молекул воды и образованию молекулярного кислорода. Количество появляющегося таким образом кислорода достаточно для поддержания биосферы в океанах спутников.

В упавших на землю метеоритах иногда обнаруживают сложные органические молекулы. Сначала было подозрение, что они попадают в метеориты из земной почвы, но теперь их внеземное происхождение вполне надёжно доказано. Например, упавший в Австралии в 1972 г. метеорит Мерчисон был подобран уже на следующее утро. В его веществе нашли 16 аминокислот -- основных строительных блоков животных и растительных белков, причём лишь 5 из них присутствуют в земных организмах, а остальные 11 на Земле редки. К тому же среди аминокислот метеорита Мерчисон в равных долях присутствуют левые и правые молекулы (зеркально симметричные друг другу), тогда как в земных организмах -- в основном левые. Кроме того, в молекулах метеорита изотопы углерода 12С и 13С представлены в иной пропорции, чем на Земле. Это, бесспорно, доказывает, что аминокислоты, а также гуанин и аденин -- составные части молекул ДНК и РНК, могут самостоятельно формироваться в космосе.

Итак, пока в Солнечной системе нигде кроме Земли, жизнь не обнаружена. Учёные не питают на этот счёт больших надежд; скорее всего Земля окажется единственной живой планетой. Например, климат Марса в прошлом был более мягким, чем сейчас. Жизнь могла там зародиться и продвинуться до определённой ступени. Есть подозрение, что среди попавших на Землю метеоритов некоторые являются древними осколками Марса; в одном из них обнаружены странные следы, возможно принадлежащие бактериям. Это ещё предварительные результаты, но даже они привлекают интерес к Марсу.

Европейское космическое агентство сообщило об успешной посадке зонда Philae на комету 67P/Чурюмова-Герасименко. Зонд отделился от аппарата Rosetta днем 12 ноября (по московскому времени). Rosetta же покинула Землю 2 марта 2004 и более десяти лет летела к комете. Основная цель миссии - исследование эволюции ранней Солнечной системы. В случае успеха самый амбициозный проект ЕКА может стать своего рода розеттским камнем не только астрономии, но и технологий.

Долгожданный гость

Комета 67P/Чурюмова-Герасименко была открыта в 1969 году советским астрономом Климом Чурюмовым при исследовании фотоснимков, сделанных Светланой Герасименко. Комета относится к группе короткопериодических: период обращения вокруг Солнца - 6,6 лет. Большая полуось орбиты - чуть свыше 3,5 астрономических единиц, масса - примерно 10 13 килограммов, линейные размеры ядра - несколько километров.

Исследования таких космических тел необходимо, во-первых, для изучения эволюции кометного вещества, и, во-вторых, для понимания возможного влияния испаряющихся в комете газов на движение окружающих небесных тел. Данные, полученные с помощью миссии Rosetta, помогут объяснить процессы эволюции Солнечной системы и возникновения воды на Земле. Кроме того, ученые надеются обнаружить органические следы от L-форм («левосторонних» форм) аминокислот, являющихся основой жизни на Земле. Если эти вещества будут найдены, гипотеза о внеземных источниках земной органики получит новое подтверждение. Однако уже к настоящему времени благодаря проекту Rosetta астрономы узнали много интересного о самой комете.

Средняя температура поверхности ядра кометы - минус 70 градусов Цельсия. Измерения, выполненные в рамках миссии Rosetta, показали: температура кометы слишком высока, чтобы ее ядро полностью покрывалось слоем льда. Как считают исследователи, поверхность ядра представляет собой темную пылевую корку. Тем не менее ученые не исключают, что там могут быть и ледяные участки.

Также установлено, что в поток газов, истекающих из комы (облака вокруг ядра кометы), входят сероводород, аммиак, формальдегид, синильная кислота, метанол, сернистый ангидрид и сероуглерод. Ранее считалось, что по мере нагревания ледяной поверхности кометы, приближающейся к Солнцу, выделяются только самые летучие соединения - двуокись и моноокись углерода.

Также благодаря миссии Rosetta астрономы обратили внимание на гантелеобразную форму ядра. Не исключено, что эта комета могла образоваться в результате столкновения пары протокомет. Вероятно, две части тела 67P/Чурюмова-Герасименко со временем разъединятся.

Есть и другая гипотеза, объясняющая формирование двойной структуры интенсивным испарением водяного пара в центральной части когда-то сферообразного ядра кометы.

С помощью Rosetta ученые установили, что каждую секунду комета 67P/Чурюмова-Герасименко выпускает в окружающее пространство водяной пар в объеме примерно двух стаканов (по 150 миллилитров). С такими темпами комета за 100 дней заполнила бы бассейн олимпийского размера. По мере приближения к Солнцу выброс пара только увеличивается.

Максимальное сближение с Солнцем произойдет 13 августа 2015 года, когда комета 67P/Чурюмова-Герасименко окажется в точке перигелия. Тогда и будет наблюдаться наиболее интенсивное испарение ее материи.

Космический аппарат Rosetta

Космический аппарат Rosetta вместе со спускаемым зондом Philae стартовал 2 марта 2004 года на ракете-носителе семейства Ariane 5 с космодрома Куру во Французской Гвиане.

Название космический аппарат получил в честь розеттского камня. Расшифровка надписей на этой древней каменной плите, выполненная к 1822 году французом Жаном-Франсуа Шампольоном, позволила лингвистам совершить гигантский прорыв в изучении египетской иероглифической письменности. Подобного качественного скачка в исследовании эволюции Солнечной системы ученые ожидают и от миссии Rosetta.

Сама Rosetta - это алюминиевый ящик размерами 2,8x2,1x2,0 метров с двумя солнечными батареями по 14 метров каждая. Стоимость проекта - 1,3 миллиарда долларов, а его основным организатором выступает Европейское космическое агентство (ЕКА). Меньшее участие в нем принимают НАСА, а также национальные космические агентства других стран. Всего в проекте задействовано 50 компаний из 14 стран Европы и США. На Rosetta размещено одиннадцать научных инструментов - специальных систем из датчиков и анализаторов.

По ходу своего путешествия Rosetta совершила три маневра вокруг орбиты Земли и один - вокруг Марса. К орбите кометы аппарат приблизился 6 августа 2014 года. За свой долгий путь аппарат успел выполнить ряд исследований. Так, в 2007-м, пролетая мимо Марса на расстоянии тысячи километров, он передал на Землю данные о магнитном поле планеты.

В 2008 году наземными специалистами во избежание столкновения с астероидом Штейнс была проведена корректировка орбиты корабля, что не помешало ему сфотографировать поверхность небесного тела. На снимках ученые обнаружили более 20 кратеров диаметрами от 200 метров. В 2010-м Rosetta передала на Землю фотографии другого астероида - Лютеции. Это небесное тело оказалось планетезималью - образованием, из которых в прошлом формировались планеты. В июне 2011-го аппарат перевели в спящий режим для экономии энергии, а 20 января 2014 года Rosetta «проснулась».

Зонд Philae

Зонд назван в честь острова Филы на реке Нил в Египте. Там находились древние культовые сооружения, а также обнаружена плита с иероглифическими записями цариц Клеопатры II и Клеопатры III. В качестве места для посадки на комету ученые выбрали участок под названием Агилика. На Земле это тоже остров на реке Нил, куда была перенесена часть древних памятников, которым угрожало подтопление в результате строительства Асуанской плотины.

Масса спускаемого зонда Philae - сто килограммов. Линейные размеры не превышают метра. Зонд несет на своем борту десять инструментов, необходимых для исследования ядра кометы. С помощью радиоволн ученые планируют изучить внутреннюю структуру ядра, а микрокамеры позволят сделать с поверхности кометы панорамные снимки. Сверло, установленное на Philae, поможет взять пробы грунта с глубины до 20 сантиметров.

Батарей Philae хватит на 60 часов автономной работы, потом питание переключится на солнечные батареи. Все данные измерений в режиме онлайн будут поступать на аппарат Rosetta, а с него - к Земле. После спуска Philae аппарат Rosetta начнет отдаляться от кометы, превратившись в ее спутник.

Их в недра Солнца. Но этот побег не проходит бесследно. При приближении комет к звезде, излучения испаряют часть ледяной субстанции, из которой состоят кометы , что приводит к появлению сверкающих хвостов, которые мы привыкли видеть у комет . Каждый раз, пролетая возле звезды, кометы теряют в весе. Когда кометы сильно уменьшаются, они могут распасться на несколько частей или даже...

https://www.сайт/journal/114740

Круговую орбиту, характерную исключительно для планет - кометы движутся по сильно вытянутым параболам. Стало ясно, что Гершелю удалось обнаружить еще одну, седьмую планету , а Солнечная система, границы... Вид Урана со стороны темного, северного, полушария Небесная шекспириада Уран окружен системой спутников , орбиты большинства из которых почти совпадают с плоскостью экватора планеты . Таким образом, спутники Урана движутся не в плоскости его орбиты (как это происходит со спутниками всех других планет ...

https://www.сайт/journal/14855

Специалисты, кто считает возможным существование внеземной жизни, полагают, что вероятность ее обнаружения достаточно высока для планет и их спутников , где есть жидкая вода. Все дело в том, что основа известных науке форм жизни - ... образовываться лишь в ходе сложных химических процессов. Скорее всего, органика скапливается на поверхности подледного океана в виде тончайшей пленки. Здесь же, в поверхностном слое, продолжают идти сложные химические реакции. Основные компоненты таких химических...

https://www.сайт/journal/147455

Того, луны "горячих Юпитеров" могут формироваться из остатков разбившихся о них спутников . Астрономы надеются, что в ближайшее время им удастся расширить свои представления о лунах внесолнечных планет благодаря телескопу "Кеплер" - его чувствительность оказалась настолько высока, что он может "видеть " спутники экзопланет. Совсем недавно ученые, анализирующие собранные "Кеплером" данные, оказались в центре...

https://www.сайт/journal/128689

Производимое деформирующимся каменистым ядром в ответ на силу притяжения от Юпитера и других спутников , вращающихся вокруг планеты . Таково существующее предположение – океаны на спутниках нагреваются главным образом благодаря деформации их ядер. В случае с Европой так... подобно микроорганизмам, обнаруженным в гидротермальных жерлах и других местах на Земле. Известно, что многие планеты и спутники отклоняются в пределах своих орбитальных плоскостей. Земля, к примеру, имеет наклон оси примерно 23 ...