Что такое произведение вектора. Единичные векторы

Определение Упорядоченную совокупность (x 1 , x 2 , ... , x n) n вещественных чисел называют n-мерным вектором , а числа x i (i = ) - компонентами, или координатами,

Пример. Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент.

Обозначения. Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху, например, a или . Два вектора называются равными , если они имеют одинаковое число компонент и их соответствующие компоненты равны.

Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) и (2, 3, 5, 0, 1) разные вектора.
Операции над векторами. Произведением x = (x 1 , x 2 , ... ,x n) на действительное число λ называется вектор λ x = (λ x 1 , λ x 2 , ... , λ x n).

Суммой x = (x 1 , x 2 , ... ,x n) и y = (y 1 , y 2 , ... ,y n) называется вектор x + y = (x 1 + y 1 , x 2 + y 2 , ... , x n + + y n).

Пространство векторов. N -мерное векторное пространство R n определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение.

Экономическая иллюстрация. Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров ). Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте. Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров

x = (x 1 , x 2 , ..., x n),

где через x i обозначается количество i-го блага, приобретенного потребителем. Будем считать, что все товары обладают свойством произвольной делимости, так что может быть куплено любое неотрицательное количество каждого из них. Тогда все возможные наборы товаров являются векторами пространства товаров C = { x = (x 1 , x 2 , ... , x n) x i ≥ 0, i = }.

Линейная независимость. Система e 1 , e 2 , ... , e m n-мерных векторов называется линейно зависимой , если найдутся такие числа λ 1 , λ 2 , ... , λ m , из которых хотя бы одно отлично от нуля, что выполняется равенство λ 1 e 1 + λ 2 e 2 +... + λ m e m = 0; в противном случае данная система векторов называется линейно независимой , то есть указанное равенство возможно лишь в случае, когда все . Геометрический смысл линейной зависимости векторов в R 3 , интерпретируемых как направленные отрезки, поясняют следующие теоремы.

Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны (параллельны).

Теорема 3 . Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны (лежали в одной плоскости).

Левая и правая тройки векторов. Тройка некомпланарных векторов a, b, c называется правой , если наблюдателю из их общего начала обход концов векторов a, b, c в указанном порядке кажется совершающимся по часовой стрелке. B противном случае a, b, c - левая тройка . Все правые (или левые) тройки векторов называются одинаково ориентированными.

Базис и координаты. Тройка e 1, e 2 , e 3 некомпланарных векторов в R 3 называется базисом , а сами векторы e 1, e 2 , e 3 - базисными . Любой вектор a может быть единственным образом разложен по базисным векторам, то есть представлен в виде

а = x 1 e 1 + x 2 e 2 + x 3 e 3, (1.1)

числа x 1 , x 2 , x 3 в разложении (1.1) называются координатами a в базисе e 1, e 2 , e 3 и обозначаются a (x 1 , x 2 , x 3).

Ортонормированный базис. Если векторы e 1, e 2 , e 3 попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным , а координаты x 1 , x 2 , x 3 - прямоугольными. Базисные векторы ортонормированного базиса будем обозначать i, j, k.

Будем предполагать, что в пространстве R 3 выбрана правая система декартовых прямоугольных координат {0, i, j, k }.

Векторное произведение. Векторным произведением а на вектор b называется вектор c , который определяется следующими тремя условиями:

1. Длина вектора c численно равна площади параллелограмма, построенного на векторах a и b, т. е.
c
= |a||b| sin (a ^b ).

2. Вектор c перпендикулярен к каждому из векторов a и b.

3. Векторы a, b и c , взятые в указанном порядке, образуют правую тройку.

Для векторного произведения c вводится обозначение c = [ab ] или
c = a × b.

Если векторы a и b коллинеарны, то sin(a^b ) = 0 и [ab ] = 0, в частности, [aa ] = 0. Векторные произведения ортов: [ij ]= k, [jk ] = i , [ki ]= j .

Если векторы a и b заданы в базисе i, j, k координатами a (a 1 , a 2 , a 3), b (b 1 , b 2 , b 3), то


Смешанное произведение. Если векторное произведение двух векторов а и b скалярноумножается на третий вектор c, то такое произведение трех векторов называется смешанным произведением и обозначается символом a b c.

Если векторы a, b и c в базисе i, j, k заданы своими координатами
a (a 1 , a 2 , a 3), b (b 1 , b 2 , b 3), c (c 1 , c 2 , c 3), то

.

Смешанное произведение имеет простое геометрическое толкование - это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.

Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка a, b, c - левая, то a b c <0 и V = - a b c , следовательно V = |a b c| .

Координаты векторов, встречающиеся в задачах первой главы, предполагаются заданными относительно правого ортонормированного базиса. Единичный вектор, сонаправленный вектору а, обозначается символом а о. Символом r =ОМ обозначается радиус-вектор точки М, символами а, АВ или |а| , | АВ| обозначаются модули векторов а и АВ.

Пример 1.2. Найдите угол между векторами a = 2m +4n и b = m-n , где m и n - единичные векторы и угол между m и n равен 120 о.

Решение . Имеем: cos φ = ab /ab, ab = (2m +4n ) (m-n ) = 2 m 2 - 4n 2 +2mn =
= 2 - 4+2cos120 o = - 2 + 2(-0.5) = -3; a = ; a 2 = (2m +4n ) (2m +4n ) =
= 4 m 2 +16mn +16 n 2 = 4+16(-0.5)+16=12, значит a = . b = ; b 2 =
= (m-n
)(m-n ) = m 2 -2mn + n 2 = 1-2(-0.5)+1 = 3, значит b = . Окончательно имеем: cos
φ = = -1/2, φ = 120 o .

Пример 1.3. Зная векторы AB (-3,-2,6) и BC (-2,4,4),вычислите длину высоты AD треугольника ABC.

Решение . Обозначая площадь треугольника ABC через S, получим:
S = 1/2 BC AD. Тогда
AD=2S/BC, BC= = = 6,
S = 1/2| AB × AC| . AC=AB+BC , значит, вектор AC имеет координаты
.
.

Пример 1.4 . Даны два вектора a (11,10,2) и b (4,0,3). Найдите единичный вектор c, ортогональный векторам a и b и направленный так, чтобы упорядоченная тройка векторов a, b, c была правой.

Решение. Обозначим координаты вектора c относительно данного правого ортонормированного базиса через x, y, z.

Поскольку c a, c b , то ca = 0, cb = 0. По условию задачи требуется, чтобы c = 1 и a b c >0.

Имеем систему уравнений для нахождения x,y,z: 11x +10y + 2z = 0, 4x+3z=0, x 2 + y 2 + z 2 = 0.

Из первого и второго уравнений системы получим z = -4/3 x, y = -5/6 x. Подставляя y и z в третье уравнение, будем иметь: x 2 = 36/125, откуда
x = ± . Используя условие a b c > 0, получим неравенство

С учетом выражений для z и y перепишем полученное неравенство в виде: 625/6 x > 0, откуда следует, что x>0. Итак, x = , y = - , z =- .

Единичный вектор - это вектор , абсолютная величина (модуль) которого равен единице. Для обозначения единичного вектора мы будем использовать нижний индекс е. Так, если задан вектор а , то его единичным вектором будет вектор а е. Этот единичный вектор направлен туда же, куда направлен и сам вектор а , и его модуль равен единице, то есть а е = 1.

Очевидно, а = а·а е (а - модуль вектора а) . Это следует из правила, по которому выполняется операция умножения скаляра на вектор .

Единичные векторы часто связывают с координатными осями системы координат (в частности, с осями декартовой системы координат). Направления этих векторов совпадают с направлениями соответствующих осей, а их начала часто совмещают с началом системы координат.

Напомню, что декартовой системой координат в пространстве традиционно называется тройка взаимно перпендикулярных осей, пересекающихся в точке, которая называется началом координат. Координатные оси обычно обозначают буквами X , Y , Z и называют соответственно осью абсцисс, осью ординат и осью аппликат. Сам Декарт пользовался только одной осью, на которой откладывались абсциссы. Заслуга использования системы осей принадлежит его ученикам. Поэтому фраза декартова система координат исторически ошибочна. Лучше говорить прямоугольная система координат или ортогональная система координат . Тем не менее, изменять традиции мы не станем и в дальнейшем будем считать, что декартова и прямоугольная (ортогональная) системы координат - это одно и то же.

Единичный вектор , направленный вдоль оси Х, обозначается i , единичный вектор , направленный вдоль оси Y , обозначается j , а единичный вектор , направленный вдоль оси Z, обозначается k . Векторы i , j , k называются ортами (рис. 12, слева), они имеют единичные модули, то есть
i = 1, j = 1, k = 1.

Оси и орты прямоугольной системы координат в некоторых случаях имеют другие названия и обозначения. Так, ось абсцисс X может называться касательной осью, а ее орт обозначается τ (греческая строчная буква тау), ось ординат - осью нормали, ее орт обозначается n , ось аппликат - осью бинормали, ее орт обозначается b . Зачем менять названия, если суть остается той же?

Дело в том, что, например, в механике при изучении движения тел прямоугольная система координат используется очень часто. Так вот, если сама система координат неподвижна, а изменение координат движущегося объекта отслеживается в этой неподвижной системе, то обычно оси обозначают X, Y, Z, а их орты соответственно i , j , k .

Но нередко, когда объект движется по какой-то криволинейной траектории (например, по окружности) бывает удобнее рассматривать механические процессы в системе координат, движущейся с этим объектом. Именно для такой движущейся системы координат и используются другие названия осей и их ортов. Просто так принято. В этом случае ось X направляют по касательной к траектории в той ее точке, в которой в данный момент этот объект находится. И тогда эту ось называют уже не осью X, а касательной осью, а ее орт обозначают уже не i , а τ . Ось Y направляют по радиусу кривизны траектории (в случае движения по окружности - к центру окружности). А поскольку радиус перпендикулярен касательной, то ось называют осью нормали (перпендикуляр и нормаль - это одно и то же). Орт этой оси обозначают уже не j , а n . Третья ось (бывшая Z) перпендикулярна двум предыдущим. Это - бинормаль с ортом b (рис. 12, справа). Кстати, в этом случае такую прямоугольную систему координат часто называют «естественной» или натуральной.

7.1. Определение векторного произведения

Три некомпланарных вектора a , b и с , взятые в указанном порядке, образуют правую тройку, если с конца третьего вектора с кратчайший поворот от первого вектора а ко второму вектору b виден совершающимся против часовой стрелки, и левую, если по часовой (см. рис. 16).

Векторным произведением вектора а на вектор b называется вектор с , который:

1. Перпендикулярен векторам a и b , т. е. с ^ а и с ^ b ;

2. Имеет длину, численно равную площади параллелограмма, построенного на векторах а и b как на сторонах (см. рис. 17), т. е.

3. Векторы a , b и с образуют правую тройку.

Векторное произведение обозначается а х b или [а ,b ]. Из определения векторного произведения непосредственно вытекают следующие соотношения между ортами i , j и k (см. рис. 18):

i х j = k , j х k = i , k х i = j .
Докажем, например, что i хj =k .

1) k ^ i , k ^ j ;

2) |k |=1, но | i x j | = |i | |J | sin(90°)=1;

3) векторы i , j и k образуют правую тройку (см. рис. 16).

7.2. Свойства векторного произведения

1. При перестановке сомножителей векторное произведение меняет знак, т.е. а хb =(b хa ) (см. рис. 19).

Векторы а хb и b ха коллинеарны, имеют одинаковые модули (площадь параллелограмма остается неизменной), но противоположно направлены (тройки а , b , а хb и a , b , b x a противоположной ориентации). Стало быть a xb = -(b xa ).

2. Векторное произведение обладает сочетательным свойством относительно скалярного множителя, т. е. l (а хb ) = (l а ) х b = а х (l b ).

Пусть l >0. Вектор l (а хb ) перпендикулярен векторам а и b . Вектор ( l а )хb также перпендикулярен векторам а и b (векторы а , l а лежат в одной плоскости). Значит, векторы l (а хb ) и ( l а )хb коллинеарны. Очевидно, что и направления их совпадают. Имеют одинаковую длину:

Поэтому l (a хb )= l а хb . Аналогично доказывается при l <0.

3. Два ненулевых вектора а и b коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору, т. е. а ||b <=>а хb =0 .

В частности, i *i =j *j =k *k =0 .

4. Векторное произведение обладает распределительным свойством:

(a +b ) хс = а хс +b хс .

Примем без доказательства.

7.3. Выражение векторного произведения через координаты

Мы будем использовать таблицу векторного произведения векторов i , j и k :

если направление кратчайшего пути от первого вектора к второму совпадает с направлением стрелки, то произведение равно третьему вектору, если не совпадает - третий вектор берется со знаком «минус».

Пусть заданы два вектора а =а х i +a y j +a z k и b =b x i +b y j +b z k . Найдем векторное произведение этих векторов, перемножая их как многочлены (согласно свойств векторного произведения):



Полученную формулу можно записать еще короче:

так как правая часть равенства (7.1) соответствует разложению определителя третьего порядка по элементам первой строки.Равенство (7.2) легко запоминается.

7.4. Некоторые приложения векторного произведения

Установление коллинеарности векторов

Нахождение площади параллелограмма и треугольника

Согласно определению векторного произведения векторов а и b |а хb | = |а | * |b |sin g , т. е. S пар = |а х b |. И, значит, D S =1/2|а х b |.

Определение момента силы относительно точки

Пусть в точке А приложена сила F =АВ и пусть О - некоторая точка пространства (см. рис. 20).

Из физики известно, что моментом си лы F относительно точки О называется вектор М , который проходит через точку О и:

1) перпендикулярен плоскости, проходящей через точки О, А, В;

2) численно равен произведению силы на плечо

3) образует правую тройку с векторами ОА и A В .

Стало быть, М =ОА х F .

Нахождение линейной скорости вращения

Скорость v точки М твердого тела, вращающегося с угловой скоростью w вокруг неподвижной оси, определяется формулой Эйлера v =w хr , где r =ОМ , где О-некоторая неподвижная точка оси (см. рис. 21).

Определение. Векторным произведением вектора а (множимое) на не коллинеарный ему вектор (множитель) называется третий вектор с (произведение), который строится следующим образом:

1) его модуль численно равен площади параллелограмма на рис. 155), построенного на векторах т. е. он равен направление перпендикулярно плоскости упомянутого параллелограмма;

3) при этом направление вектора с выбирается (из двух возможных) так, чтобы векторы с составляли правую систему (§ 110).

Обозначение: или

Дополнение к определению. Если векторы коллинеарны, то фигуре считая ее (условно) параллелограммом, естественно приписать нулевую площадь. Поэтому векторное произведение коллинеарных векторов считается равным нуль-вектору.

Поскольку нуль-вектору можно приписать любое направление, это соглашение не противоречит пунктам 2 и 3 определения.

Замечание 1. В термине «векторное произведение» первое слово указывает на то, что результат действия есть вектор (в противоположность скалярному произведению; ср. § 104, замечание 1).

Пример 1. Найти векторное произведение где основные векторы правой системы координат (рис. 156).

1. Так как длины основных векторов равны единице масштаба, то площадь параллелограмма (квадрата) численно равна единице. Значит, модуль векторного произведения равен единице.

2. Так как перпендикуляр к плоскости есть ось то искомое векторное произведение есть вектор, коллинеарный вектору к; а так как оба они имеют модуль 1, то искомое векторное произведение равно либо k, либо -k.

3. Из этих двух возможных векторов надо выбрать первый, так как векторы к образуют правую систему (а векторы левую).

Пример 2. Найти векторное произведение

Решение. Как в примере 1, заключаем, что вектор равен либо k, либо -k. Но теперь надо выбрать -k, так как векторы образуют правую систему (а векторы левую). Итак,

Пример 3. Векторы имеют длины, соответственно равные 80 и 50 см, и образуют угол 30°. Приняв за единицу длины метр, найти длину векторного произведения а

Решение. Площадь параллелограмма, построенного на векторах равна Длина искомого векторного произведения равна

Пример 4. Найти длину векторного произведения тех же векторов, приняв за единицу длины сантиметр.

Решение. Так как площадь параллелограмма, построенного на векторах равна то длина векторного произведения равна 2000 см, т. е.

Из сравнения примеров 3 и 4 видно, что длина вектора зависит не только от длин сомножителей но также и от выбора единицы длины.

Физический смысл векторного произведения. Из многочисленных физических величин, изображаемых векторным произведением, рассмотрим только момент силы.

Пусть А есть точка приложения силы Моментом силы относителько точки О называется векторное произведение Так как модуль этого векторного произведения численно равен площади параллелограмма (рис. 157), то модуль момента равняется произведению основания на высоту т. е. силе, умноженной на расстояние от точки О до прямой, вдоль которой действует сила.

В механике доказывается, что для равновесия твердого тела необходимо, чтобы равнялась нулю не только сумма векторов , представляющих силы, приложенные к телу, но также и сумма моментов сил. В том случае, когда все силы параллельны одной плоскости, сложение векторов, представляющих моменты, можно заменить сложением и вычитанием их модулей. Но при произвольных направлениях сил такая замена невозможна. В соответствии с этим векторное произведение определяется именно как вектор, а не как число.