Корпус для солнечной батареи своими руками. Электростанция на солнечных батареях своими руками

Экология потребления. Лайфхак: Независимость от энергии и роста цен на нее, будь она хоть тепловая или же электрическая. На помощь придут солнечные панели и самодельные ветряки - одни из видов альтернативных источников электроэнергии

Что для Вас значит быть фермером? Для меня это независимость. Независимость от различного рода санкций, вводимых разными странами. Независимость от роста цен на продукты питания, так как все можно выращивать у себя на хозяйстве. И, конечно, это независимость от энергии и роста цен на нее, будь она хоть тепловая или же электрическая. В одной из своих статей я писал о том, как построить своими руками биогазовую установку, но она подходит тем фермерам, которые разводят скот, а как быть тем фермерам, которые занимаются овощеводством или растениеводством?

На помощь придут солнечные панели и самодельные ветряки - одни из видов альтернативных источников электроэнергии. На мой взгляд, все должно быть в совокупности. Ветряк зарядит аккумуляторы, когда есть ветер, но нет солнечного света, а солнечная панель наоборот.

Принцип работы солнечных батарей:

Чтобы понять, как собрать своими руками солнечные панели, необходимо разобраться в их принципе работы. Это позволит выбрать соответствующий материал при покупке. Я считаю, что необходимо знать следующее:

  • Солнечные батареи работают за счет фотоэлементов, которые бывают монокристаллические и поликристаллические. Очень часто фотоэлементы называют солнечные элементы.
  • Солнечные элементы своими руками собрать вряд ли получится, поэтому покупать их придется в любом случае. Я их искал в России, но к сожалению сейчас все делают в Китае.

В видео ниже отрывок из научной программы о солнечных панелях, в нем рассказано немного истории и то, как работают фотоэлементы. В конце статьи будет подробное видео о том, как собрать солнечную панель своими руками.

После того, как из видео вы узнали о принципе работы солнечной батареи, мы можем подвести некоторые итоги:

  1. У монокристаллических фотоэлементов КПД составляет порядка 13 %, но он выгоднее лишь в том случае, когда количество солнечных дней достаточно высокое.
  2. В России эти панели я считаю ставить не выгодно, поэтому существуют поликристаллические фотоэлементы, их КПД составляет примерно 7%, но они лучше работают при облачности и малом количестве солнечного дня.
  3. Сейчас существуют технологии, которые позволяют делать фотоэлемент с КПД более 40 %.
  4. Примерно один фотоэлемент будет выдавать 2.7 ватт.
  5. Цена на поликристаллические и монокристаллические фотоэлементы в принципе одинакова, также она одинакова на солнечные панели.

Нужно понимать сколько мощности вам необходимо и, исходя из этого, вести расчет требуемого количества солнечных панелей, но об этом поговорим в будущих статьях. Важно знать, что солнечные панели можно использовать напрямую, поэтому, если вам необходимо вскипятить воду в чайнике 2 кВт, то для этого потребуется 20 панелей по 100 Вт. Но если использовать аккумуляторы, то можно обойтись 3-5 батареями, которые зарядят аккумулятор после того, как чайник вскипятит воду.

Хотелось бы отметить, что зачастую аккумуляторы стоят столько же, сколько и сами панели. Если использовать солнечные панели для освещения, то можно обойтись 200 Вт панелью и ставить в доме энергосберегающие лампочки.

Собираем солнечные панели своими руками

Перед сборкой солнечных панелей своими руками потребуется сделать каркас для батареи. В качестве защитного слоя и прозрачной поверхности в каркасе используют оргстекло, можно использовать и обычное стекло, но оно не так надежно. Для корпуса используют алюминиевые уголки.

ВАЖНО уделить внимание пайке фотоэлементов в цепь, от этого зависит то, насколько хорошо будет работать солнечная панель. Фотоэлементы бывают с припаянными проводами, что облегчит задачу, но паять придется в любом случае. Предварительно наносится флюс и припой.

О том, как собрать солнечную панель своими руками смотрите в видео ниже.

Немного экономики по поводу солнечных панелей и выгодности сборки её своими руками

Поискав в интернете фотоэлементы для сборки солнечных панелей, чтобы купить их в России, нашел их по 3200 рублей за 38 штук, считаю это не выгодным, так как сейчас существуют панели за 4500 рублей, разница в 1300 сократит ваше время и силы.

Но если поискать китайские солнечные элементы, то можно найти по 4500 рублей за 100 штук. Из 100 штук можно собрать уже две панели на 100 Вт. В этом случае выгодность покупки фотоэлементов на лицо. Хочу обратить ваше внимание на то, что в видео ниже идет сборка фотоэлементов, размер которых 125*63. В интернете я нашел китайские солнечные элементы размером 156*156 с их помощью можно собрать 4 солнечные панели по 100 Вт.

Как и обещал, видео о том, как собрать солнечную панель своими руками. Очень подробно показан принцип пайки и герметизации. ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций - важный фактор оздоровления - сайт

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

Присоединяйтесь к нам в

являются фотоэлектрические преобразователи (солнечные модули), которые обращают энергию солнечного света в электричество. Для того, чтобы в доме пользоваться бытовыми приборами за счет солнечной батареи, таких модулей должно быть достаточно много.

Энергии, вырабатываемой одним модулем, недостаточно для удовлетворения энергетических потребностей. Между собой фотоэлектрические преобразователи связаны одной последовательной цепью.

Части, из которых состоит солнечная батарея:

  1. Солнечные модули ,объединенные в рамки.В одной рамке объединяются от единиц до нескольких десятков фотоэлектрических элементов. Для обеспечения электроэнергией целого дома понадобится несколько панелей с элементами.
  2. . Служит для накопления получаемой энергии, которую затем можно использовать в темное время суток.
  3. Контроллер . Он следит за разрядкой и зарядкой аккумулятора.
  4. . Преобразует постоянный ток, полученный от солнечных модулей в переменный.

Солнечный модуль (или фотоэлектрический элемент) основан на принципе p-n перехода, и по своему устройству очень напоминает транзистор. Если у транзистора спилить шляпку и на поверхность направить солнечные лучи, то подключенным к нему прибором можно определить мизерный электрический ток. Солнечный модуль работает по такому же принципу, только поверхность перехода у солнечного элемента значительно больше.

Как и многие типы транзисторов, солнечные элементы изготавливаются из кристаллического кремния.

По технологии изготовления и материалам различают три вида модулей:

  1. Монокристаллические . Изготовлены в виде цилиндрических кремниевых слитков. Преимущества элементов заключается в высокой производительности, компактности и в наибольшем сроке службы.
  2. Тонкопленочные . Делается напыление слоев фотоэлектрического преобразователя на тонкую подложку. КПД тонкопленочных модулей относительно невысок (7-13%).
  3. Поликристаллические . Расплавленный кремний заливается в квадратную форму, затем остуженный материал режется на квадратные пластинки. Внешне отличаются от монокристаллических модулей тем, что края углов у поликристаллических пластин не обрезаны.

Аккумулятор. В солнечных батареях наибольшее применение нашли свинцово-кислотные аккумуляторы. Стандартный аккумулятор имеет напряжение 12 вольт, для получения большего напряжения собирают аккумуляторные блоки. Так можно собрать блок напряжением 24 и 48 вольт.

Контроллер заряда солнечных батарей. Контроллер заряда действует по принципу регулятора напряжения в автомобиле. В основном на 12 вольт выдают напряжение от 15 до 20 вольт, и без контроллера могут быть повреждены перегрузкой. При 100% заряженном аккумуляторе контроллер отключает модули и предохраняет аккумулятор от закипания.

Инвертор. Солнечные модули вырабатывают постоянный ток, а для использования бытовых приборов и техники требуется переменный ток и напряжение 220 вольт. Инверторы предназначены для преобразования постоянного тока, делая его переменным.

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Собирать инвертор самостоятельно имеет смысл только при небольшом энергопотреблении. Контроллер заряда в простом исполнении не так дорого стоит, поэтому нет особого смысла тратить время на изготовление прибора.

Технология изготовления своими руками

Для сборки солнечной батарей потребуется:

  1. Сконструировать рамку (корпус).
  2. Спаять все солнечные элементы в параллельную цепь.
  3. Закрепить солнечные элементы на рамке.
  4. Сделать корпус герметичным – прямое попадание атмосферных осадков на фотоэлектрические элементы недопустимо.
  5. Разместить батарею в районе наибольшей солнечной освещенности.

Для удовлетворения энергетических потребностей частного дома одной солнечной панели (рамки) будет недостаточно. Исходя из практики, с одного квадратного метра солнечной панели можно получить 120 Вт мощности. Для нормального энергообеспечения жилого дома потребуется где-то 20 кв. м. площади солнечных элементов.

Чаще всего батареи размещают на крыше дома с солнечной стороны.

Сборка корпуса


Корпус можно собирать из фанерного листа и реек, или из алюминиевых уголков и листа и оргстекла (текстолита). Необходимо определиться, сколько элементов будет размещаться в рамке. Следует учитывать, что между элементами необходим зазор в 3-5 мм, и размер рамки рассчитывается с учетом этих расстояний. Расстояние необходимо для того, чтобы при тепловом расширении пластины не прикасались друг с другом.

Сборка конструкции из алюминиевого профиля и оргстекла:

  • из алюминиевого уголка делается прямоугольный каркас;
  • По углам в алюминиевом корпусе сверлятся отверстия для крепежа;
  • на внутреннюю часть профиля корпуса наносится силиконовый герметик по всему периметру;
  • в раму устанавливается лист оргстекла (текстолита) и плотно прижимается к раме;
  • по углам корпуса с помощью шурупов ставятся крепежные уголки, которые надежно фиксируют лист прозрачного материала в корпусе;
  • герметику дают основательно высохнуть;

Все, корпус готов. Перед размещением солнечных элементов в корпусе необходимо тщательно протереть поверхность от грязи и пыли.

Соединение фотоэлементов


Обращаясь с фотоэлектронными элементами, следует помнить, что они очень хрупкие и требуют бережного отношения. Перед соединением пластин в последовательную цепочку их сначала тщательно, но аккуратно протирают– пластины должны быть идеально чистыми.

Если фотоэлементы были куплены уже с припаянными проводниками, это упрощает процесс соединения модулей. Но перед сборкой в этом случае необходимо проверить качество готовой пайки, и если есть неровности – устранить их.

На фотоэлектрических пластинах предусмотрены контакты по обеим сторонам – это контакты разной полярности. Если проводники(шины) еще не припаяны, необходимо сначала припаять их к контактам пластин, а затем уже соединить фотоэлектрические элементы между собой.

Чтобы припаять шины к фотоэлектрическим модулям, нужно:

  1. Отмерить нужную длину шины и нарезать на куски нужное количество полосок.
  2. Протереть контакты пластин спиртом.
  3. Тонким слоем нанести на контакт флюс по всей длине контакта с одной стороны.
  4. Приложить шину точно по длине контакта и разогретым паяльником медленно провести по всей поверхности пайки.
  5. Перевернуть пластину и повторить все операции пайки на другой стороне.

Нельзя сильно прижимать паяльник к пластине, элемент может лопнуть. Также необходимо проверить качество пайки – неровностей на лицевой стороне фотоэлементов быть не должно. Если бугорки и шероховатости остались, нужно еще раз аккуратно пройтись паяльником по шву контакта. Пользоваться необходимо маломощным паяльником.

Что нужно сделать, чтобы правильно и точно произвести соединение фотоэлектрических элементов:

  1. Если нет опыта в сборке элементов, рекомендуется воспользоваться разметочной поверхностью, на которой следует разместить элементы (фанерный лист).
  2. Расположить солнечные панели строго по разметке. Размечая, не забывать оставлять расстояние между элементами 5 мм.
  3. Пропаивая контакты пластин, обязательно следить за полярностью. Фотоэлементы должны быть правильно собраны в последовательную цепочку, иначе батарея не будет нормально работать.

Механический монтаж панелей:

  1. В корпусе сделать разметку для пластин.
  2. Солнечные элементы поместить в корпус, положив их на оргстекло. В рамке закрепить силиконовым клеем по размеченным местам. Клея много не наносить, только крохотную каплю по центру пластины. Нажимать осторожно, чтобы не повредить пластины.В корпус лучше перемещать пластины вдвоем, одному будет неудобно.
  3. Соединить все провода по краям пластин с общими шинами.

Прежде чем герметизировать панель, нужно протестировать качество пайки. Конструкцию аккуратно выносят поближе к солнечному свету и замеряют напряжение на общих шинах. Оно должно быть в пределах ожидаемых значений.

Как вариант, герметизацию можно провести следующим образом:

  1. Нанести капельки силиконового герметика между пластинами и по краям корпуса, аккуратно пальцами руки края фотоэлементов прижать к оргстеклу. Нужно, чтобы элементы как можно плотнее легли к прозрачному основанию.
  2. Поставить на все края элементов небольшой груз , допустим, головки из автомобильного набора инструментов.
  3. Дать герметику хорошо высохнуть , пластины за это время надежно зафиксируются.
  4. Затем промазать аккуратно все стыки между пластинами и краями рамки. То есть, нужно промазать в корпусе все, кроме самих пластин. Попадание герметика на края тыльной стороны пластин допустимо.

Финальная сборка солнечной батареи


  1. Сбоку корпуса установить соединительный разъем, разъем соединить с Шоттки.
  2. Закрыть с наружной стороны пластины защитным экраном из прозрачного материала. В данном случае, оргстеклом. Конструкция должна быть герметичной и исключать проникновение в нее влаги.
  3. Лицевую сторону (оргстекло) желательно обработать , например, лаком (лак PLASTIK-71).

Для чего нужен диод Шоттки? Если свет падает только на часть солнечной батареи, а другая часть затемнена, возможен выход элементов из строя.

Диоды помогают избежать поломки конструкции в таких случаях. При этом теряется мощность на 25%, но без диодов не обойтись – они шунтируют ток, ток идет в обход фотоэлементов. Чтобы падение напряжения было минимальным, необходимо применять низкоомные полупроводники, такими являются диоды Шоттки.

Преимущества и недостатки солнечной батареи


У солнечных батарей есть как преимущества, так и недостатки. Если бы были только одни плюсы от применения фотоэлектрических преобразователей, весь мир давно бы уже перешел на этот вид получения электроэнергии.

Преимущества:

  1. Автономность источника питания , нет зависимости от перебоев напряжения в централизованной электросети.
  2. Отсутствие абонентской платы за использование электроэнергией.

Недостатки:

  1. Высокая себестоимость оборудования и элементов.
  2. Зависимость от солнечного освещения.
  3. Возможность повреждения элементов солнечной батареи вследствие неблагоприятных погодных условий (град, буря, ураган).

В каких случаях целесообразно использовать установку на фотоэлектрических элементах:

  1. Если объект (дом или дача) находится на большом удалении от линии электропередач. Это может быть загородный коттедж в сельской глубинке.
  2. Когда объект расположен в южном солнечном районе.
  3. При совмещении различных видов энергии. Например, отопление частного дома с помощью печного отопления и солнечной энергии. Себестоимость маломощной солнечной станции будет не столь высока, и может быть экономически оправдана в данном случае.

Установка


Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом , велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются , следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон , на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником , и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки , деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Схема электроснабжения дома


Последовательная цепь энергоснабжения частного дома на солнечных батареях выглядит следующим образом:

  1. Солнечная батарея из нескольких панелей , которые расположены на скате крыши дома, либо на кронштейне. В зависимости от энергопотребления, панелей может быть до 20 штук и больше. Батарея вырабатывает постоянный ток 12 вольт.
  2. Контроллер зарядки . Устройство предохраняет аккумуляторы от преждевременного разряда, а также ограничивает напряжение в цепи постоянного тока. Тем самым, контроллер защищает аккумуляторы от перегрузки.
  3. Инвертор напряжения . Преобразует постоянный ток в переменный ток, обеспечивая тем самым возможность потребления электроэнергии бытовыми приборами.
  4. Аккумуляторы . Для частных домов и дач ставят несколько аккумуляторов, соединяя их последовательно. Служат для накопления энергии. Энергия аккумуляторов используется в темное время суток, когда элементы солнечной батареи не вырабатывают ток.
  5. Электросчетчик .

Довольно часто в частных домах система энергоснабжения дополняется резервным генератором.

В целом, собрать солнечную батарею своими руками не так уж и сложно. Необходимы только определенные средства, терпение и аккуратность.


Если вы решили собрать солнечную панель своими силами, то вы скорее всего столкнетесь с такой вещью, как пайка проводников на фотоэлементы. Сам по себе процесс пайки шин на солнечные элементы является очень кропотливым, поэтому сложным. Для того, чтобы ваше стремление к использованию альтернативных источников энергии не столкнулось с такой преградой, вы можете ознакомиться с основными аспектами правильной пайки проводников на элементы солнечной панели.

Материалы необходимы для пайки элементов:
1) солнечные элементы
2) тонкие плоские проводники
3) паяльник
4) широкие плоские проводники
5) флюс
6) припой

Рассмотрим более подробно все нюансы процесса пайки элементов солнечной панели.

Самое главное при данном процессе это не спешить. Сами солнечные элементы весьма тонкие и хрупкие, их толщина оставляет всего 0.2 мм, поэтому любое чрезмерное усилие или резкое движение может привести к их поломке.

В среднем на пайку одной солнечной панели состоящей из 36 элементов уходит порядка двух дней времени. Поэтому если вы решили собирать целые системы состоящие из множества солнечных панелей, то всерьез задумайтесь над количеством времени затраченным на пайку проводников, возможно приобретать солнечные элементы с уже готовыми проводниками будет для вас выгоднее.


Основной ошибкой тех, кто впервые решил собрать солнечную панель является то, что они считают достаточным приобрести в магазине только сами солнечные элементы, а остальное можно заменить аналогами продающимися на местном рынке радиодеталей. Однако данное видение не совсем верно, в солнечных панелях используются плоские проводники, которые обычными проводами заменять не рекомендуется, так как потребуются достаточно толстые провода, а это означает большие затраты времени на пайку, не эстетичный вид конструкции и к тому же, излишняя жесткость провода может стать причиной поломки самого элемента.

Именно поэтому автор рекомендует заказывать комплект солнечных элементов уже с диодами, шинами, тонкими плоскими проводниками для пайки элементов и более широкими для соединения секций между собой. Такой подход сэкономит как ваше время, так и деньги на доставку.

Так же нам понадобиться паяльник мощностью 60-80 Вт. Если паяльник будет менее мощным, то скорее всего он будет быстрее остывать из-за того, что большая поверхность солнечного элемента будет отбирать тепло, следовательно придется придавливать паяльник и дольше удерживать его на солнечном элементе. Это в свою очередь может вызвать поломку элемента либо его перегрев. В качестве припоя автор рекомендует использовать проволочное олово, можно даже с канифолью. В качестве флюса подойдет любой бескислотный для пайки радиоэлектроники, но желательно использовать тот, который не требует промывки и оставляет меньше жирных следов.

После того, как все необходимые инструменты и комплектующие были собраны, можно приступать к подготовке к пайке солнечных элементов. Для начала необходимо нарезать плоские проводники. Длину проводников необходимо рассчитать так, чтобы она была чуть короче ширины солнечного элемента. Таким образом, при использовании солнечных элементов размером 78 на 156 мм, длина проводника должна составлять 146 мм, учитывая зазор в 5 мм между элементами. Распределение проводника по элементу идет следующим образом: 78 мм припаивается к лицевой части элемента, 5 мм оставляет на зазор между ними, а 63 мм припаивается к трем контактам расположенным на тыльной стороне элемента.

Довольно удобно производить нарезку проводников при помощи толстого картона. Берется два листа картона шириной 63 мм и толщиной 5 мм, они складываются вместе, и затем на них наматывается проводник. Затем картон раздвигается и с одной стороны проводник разрезается ножницами.


Так же следует заметить, что при пайке элементов 6 на 6, в целях экономии, допустимо паять шину не по всей длине, а оставшуюся часть просто залудить.

Однако запомните от того насколько качественно будут припаяны проводники будет сильно зависеть КПД всей солнечной батареи.

После нарезки проводника можно приступать к подготовке элементов для пайки. Обычно лицевая торона элементов является минусом, а тыльная плюсом. поэтому по всей длине контактной площадки лицевой стороны она промазывается флюсом.


Затем плоский проводник прикладывается и фиксируется паяльником. Лудить контакт не обязательно, так как на лицевой стороне контакты посеребрены, а на самой шине имеется тонкий слой олова. Главное чтобы шина крепко припаялась к контактам и хорошо держалась, в противном случае следует все же лудить.


После этого плавным движением припаивается проводник с обратной стороны элемента, главное следить за тем, чтобы в процессе сам элемент не перегревался.

Эти действия необходимо проделать с каждым элементом, после чего начинать пайку их в общую цепь. Стандартно принято соединять элементы последовательно от плюса к минусу в одну цепочку, таким образом напряжение всех элементов суммируется, а ток остается прежним.

Ниже приведена схема пайки элементов в общую цепь:



После того, как вы определились с итоговой формой солнечной панели следует разместить элементы в несколько рядов на рабочей поверхности тыльной стороной вверх.

Есть несколько моментов, которые помогут вам зафиксировать элементы во время пайки, чтобы в конце панель имела красивый и аккуратный вид. Края солнечных элементов можно прихватить скотчем, который в последствии просто срезается канцелярским ножом. Для того, чтобы расстояние между элементами было одинаково вы можете воспользоваться строительными крестиками, которые обычно используются для укладки плитки, эти крестики обеспечат зазор в 2-5 мм.

Лучше всего сделать целый макет из фанеры, на которую приклеиваются крестики.

Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.

Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.

Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:

  • Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
  • Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
  • Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.

Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.

Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.

Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.

Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.

В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.

Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.

При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между . Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.

Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно .

Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см 2 , на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.

Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.

Основные недостатки солнечных батарей:

  • Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
  • Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
  • Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
  • В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
  • Большая площадь, требующаяся для конструкции достаточной мощности.
  • Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
  • Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.

Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.

Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.

Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.

Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:

  • Отсутствие механических преобразований энергии и движущихся частей.
  • Минимальные расходы на эксплуатацию.
  • Долговечность 30~50 лет.
  • Тишина при работе, отсутствие вредных выбросов. Экологичность.
  • Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
  • Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
  • Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м 2 . В средней полосе России он находится в пределах 0,7~1,0 кВт/м 2 . КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м 2 , 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м 2 . Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м 2 . Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м 2 , а для 50 Ач — примерно 1,5 м 2 .

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Подбор материалов для создания панели

В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.

Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.

Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м 2:

  • Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
  • Ток: КЗ — 1,5 А, рабочий — 1,2 А.
  • Рабочая мощность — 0,62 Вт.
  • Габариты — 52х77 мм.
  • Цена 29 р.
Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.

Изготовление солнечной батареи для дома своими руками

Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.

Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.

Рассчитываем комплектующие

Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.

Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.

Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.

Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.

Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.

Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.

Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.

Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.

Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:

  • Длина — 15 x 52 = 780 мм.
  • Ширина — 77 x 6 = 462 мм.

Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.

Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.

Также нам потребуются:

  • Паяльник электрический 40 Вт.
  • Припой, канифоль.
  • Монтажный провод.
  • Силиконовый герметик.
  • Двусторонний скотч.

Этапы изготовления

Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.

Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, для квартиры и дома.

При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать .

Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:

  1. Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
  2. Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
  3. Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
  4. Склеиваем окончательно пластины с задней стороны скотчем.
  5. Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
  6. Вставляем в раму заднюю стенку и герметизируем её.

При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.

Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.

Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.

Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м 2 = 20 м 2 .

Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.

Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.

Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.

Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.

Делаем выводы

При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.

Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.

В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.

Видео о том, как изготовить прибор для сбора солнечной энергии самому

Продолжаем нашу тему, посвященную строительству домашней солнечной электростанции. С общей информацией о , о принципах расчета солнечных панелей, а также о для автономных систем электроснабжения вы можете ознакомиться, прочитав наши предыдущие статьи. Сегодня же мы расскажем об особенностях самостоятельного изготовления солнечных панелей, о последовательности подключения электрических преобразователей и о защитных устройствах, которые должны входить в комплект солнечной электростанции.

Изготовление фотоэлектрических модулей

Стандартный фотоэлектрический модуль (панель) состоит из трех основных элементов.

  1. Корпус панели.
  2. Рамка.
  3. Фотоэлектрические ячейки.

Самым простым по конструкции элементом солнечного модуля является его корпус. Как правило, его лицевая сторона представляет собой обыкновенный лист стекла, размеры которого соответствуют количеству солнечных ячеек.

Adoronkin Пользователь FORUMHOUSE

Стекло использовал обычное оконное – 3 мм (самое недорогое). Проводил тест: производительность модуля стекло ухудшает незначительно, так что не вижу особого смысла брать закалённое или просветлённое стекло.

Оконное стекло часто используется при изготовлении защитного корпуса для солнечных панелей. Если же вы сомневаетесь в прочности этого материала, то можно использовать стекло закаленное или обычное, но более толстое (5…6 мм). В этом случае можно не сомневаться, что фотоэлектрические элементы будут надежно защищены от проявлений разрушительной природной стихии (от града, например).

Тыльная сторона корпуса может быть изготовлена из влагостойкого материала, который будет защищать его от попадания пыли и влаги на солнечные элементы. Это может быть металлическая жесть, герметично прикрепленная к рамке с помощью заклепок и силикона или, опять же, обыкновенное стекло.

При этом наличие задней стенки на корпусе самодельной солнечной панели некоторые умельцы и вовсе не приветствуют.

Adoronkin

Тыльная сторона батареи открыта (для лучшего охлаждения), но покрыта акриловым лаком, смешанным с прозрачным герметиком.

Учитывая, что при нагреве панелей значительно падает их мощность, подобное решение выглядит оправданно. Ведь оно обеспечивает эффективное охлаждение полупроводниковых элементов и одновременно – качественную герметизацию солнечных ячеек. Все вместе гарантированно продлевает срок эксплуатации солнечных панелей.

Рамка

Рамки для самодельных солнечных панелей чаще всего изготавливают из стандартных алюминиевых уголков. Лучше использовать алюминий с покрытием – анодированный или крашенный. Если есть соблазн изготовить рамку из дерева или пластика, будьте готовы к тому, что через пару лет изделие может рассохнуться или вовсе развалиться под действием климатических факторов (исключение составляет оконный пластик).

BOB691774 Пользователь FORUMHOUSE

Покупаю там, где производят окна. Цена – 80 руб. за метр. Профиль полностью готов к работе, только запилить надо на 45° и под нагревом, углы склеить.

Рассмотрим самый простой вариант панели: панель с алюминиевой рамкой.

Детали алюминиевой рамки легко скрепляются между собой болтами или саморезами.

Впоследствии к алюминиевому уголку можно без особых усилий приклеить стеклянный корпус. Все, что для этого нужно – обычный силиконовый герметик.

Adoronkin

Я брал силиконовый герметик – универсальный. Достаточно 1-го тюбика. Герметик лучше брать прозрачный. Химическую безопасность герметика по отношению к фотоэлектрическим элементам подтвердила годовая эксплуатация батареи.

В итоге получится неглубокий ящик со стеклянным дном, к которому впоследствии будут приклеены фотоэлектрические элементы.

Определяя размер корпуса и рамки, следует учитывать необходимость в зазоре между соседними фотоэлектрическими ячейками, который равен – 2…5 мм.

Пайка солнечных элементов

Самым ответственным этапом сборки солнечных модулей является спаивание фотоэлектрических элементов. Солнечные ячейки изготовлены из очень хрупкого материала, поэтому и обращения они требуют соответствующего. Те люди, которые уже имели с ними дело, впредь при покупке солнечных элементов заказывают себе ячейки с некоторым запасом по количеству (10 – 15%). Например, для изготовления панели, рассчитанной на 36 элементов, они приобретают 39 – 42 ячейки.

Тонкие шинки для спаивания солнечных ячеек, более толстые шинки (с помощью которых соседние ряды панели объединяются между собой) и солнечные ячейки лучше приобретать у одного и того же продавца. Это экономит время на поиски подходящих элементов и дает определенные гарантии их совместимости.

Пайка элементов в случае их последовательного соединения производится по следующей схеме.

Отрицательный (лицевой) контакт солнечного элемента припаивается к положительному (тыльному) контакту следующей ячейки и т. д.

Так выглядит готовая панель.

Для работы понадобятся следующие инструменты и материалы:

  • Мощный паяльник 40-60 Вт (не менее).
  • Флюс (флюс-маркер) – обязательно должен быть нейтральным (в противном случае припаянные контакты быстро окислятся).
  • Шинки разной ширины.
  • Резиновые перчатки – чтобы не вымазывать солнечные элементы (особенно их лицевую часть).

Еще нам понадобится олово. Это на тот случай, если шинка будет плохо припаиваться к контактам. Ячейки, с которыми ведется работа, располагаются на твердой и ровной поверхности. Это может быть дощечка или стекло. Для того, чтобы ячейки не скользили по рабочей поверхности стола, их можно зафиксировать с помощью кусочков изоленты, проклеенных по периметру элемента. Клеить изоленту на саму ячейку (особенно на ее лицевую часть) не следует. Свободный конец шинки следует прикрепить к столу с помощью двухстороннего скотча.

Пайка элементов и сборка панелей производятся в следующем порядке: первым делом контактная канавка пластины по всей длине промазывается флюсом. Затем плоская шинка укладывается в канавку и припаивается к контакту пластины по всей ее ширине (на отрицательном полюсе элемента).

Или в трех точках (как правило – на положительном полюсе элемента).

Количество точек припаивания зависит от конструкции элемента.

Поочередно контакты припаиваются ко всем солнечным элементам. Дополнительный припой используется только в тех случаях, когда с первого раза шинку не удается надежно припаять к пластине.

В первую очередь контакты припаиваются к лицевой (отрицательной) стороне каждой ячейки, которая будет ложиться на стеклянный корпус панели.

Шинка необходимого размера подготавливается заранее. Ее длина должна соответствовать ширине 2-х соседних пластин.

Пластины с припаянными контактами выкладываются на стеклянный корпус панели лицевой стороной вниз. После этого их можно припаивать друг к другу согласно полярности («–» каждой ячейки припаивается к «+» соседней ячейки и так далее).

Для того чтобы элементы было удобнее располагать на стеклянном корпусе панели, его поверхность можно предварительно разметить.

Sliderrr Пользователь FORUMHOUSE

На стекле нанес черным фломастером точки расположения ячеек. Расположил ячейки и зафиксировал их головками, гайками и болтами.

Гайки, ключи и другие металлические предметы в данном случае использовались в качестве груза. Зафиксировать ячейки можно также с помощью прозрачного силикона, который наносится на стекло по углам каждого элемента.

Объединяя между собой соседние ряды фотоэлектрических элементов, следует использовать дополнительный припой. Это повысит надежность пайки в местах соединения проводников различной ширины.

Когда все ячейки спаяны между собой, а проводники выведены наружу сквозь алюминиевую рамку панели, можно приступать к заливке солнечных элементов.

Для этого швы между соседними элементами заливаются силиконовым герметиком.

Sliderrr

Залил силиконом зазоры между панелями (немного приплюснул и срезал сопло шприца, чтобы обеспечить эстетичность шва и хороший контакт силикона со стеклом). Когда подсохло, промазал по периметру каждую панельку ещё раз. После того, как высох герметик, два раза покрыл ячейки яхтовым лаком. В дальнейшем попробую лак изоляционный.

Пользователь Mirosh вместо лака использует для заливки ячеек белый силикон, который наносит на поверхность тонким слоем при помощи шпателя. Результат – вполне удовлетворителен.

Перед окончательной сборкой каждый элемент желательно протестировать на предмет генерируемой им мощности. Сделать это можно с помощью мультиметра. Если существенных различий между силой тока и напряжением, которые генерирует каждая отдельная ячейка, нет, то можно смело включать их в состав фотоэлектрического модуля.

Установка диодов Шоттки

В конструкции солнечных панелей зачастую используются элементы, о которых мы ранее не упоминали. Это шунтирующие диоды Шоттки.

К их установке прибегают по двум причинам.

Во-первых, шунтирующие диоды ставят для того, чтобы в темное время суток или в пасмурную погоду солнечные панели не разряжали аккумулятор, входящий в комплект солнечной электростанции.

Alex МАП Пользователь FORUMHOUSE

В случае прямого подключения солнечных батарей к аккумулятору ночью на панелях высаживается напряжение, и они греются. Поэтому в схему примитивного солнечного контроллера, разработанного ещё лет 10 назад, был введён диод Шоттки (защита от ночного разряда АКБ).

Если к солнечным панелям подключен современный контроллер, то особой необходимости в защите от ночного разряда нет. Исправный контроллер, без помощи дополнительных устройств, вовремя отключит СБ от аккумулятора.

Во-вторых, если солнечный модуль закрывается тенью от стоящего рядом здания (или другого массивного предмета), то мощность этого элемента снижается. Последствия снижения мощности таковы: по отношению к остальным панелям, подключенным к затененному элементу последовательно, затененный элемент из источника тока превращается в резистивную нагрузку. Сопротивление затененного модуля сильно возрастает, а его температура значительно увеличивается.

Значительное снижение мощности – это самое безобидное из того, к чему может привести частичное затенение последовательно соединенной солнечной батареи. Ведь в конечном итоге затененный модуль перегреется и выйдет из строя. Это явление получило название «эффект горячего пятна».

Для того чтобы избежать этого эффекта, параллельно каждому последовательно подключенному модулю (или последовательному ряду солнечных ячеек) устанавливается диод Шоттки. Диод позволяет пустить электричество в обход затененной панели. В этом случае генерируемое напряжение снизится, но большой просадки тока удастся избежать.

Alex МАП

Большой ток от остальных панелей цепи, которые освещены, не прервётся, а пойдёт в обход затенённых частей панелей через диоды. Итоговое напряжение станет чуть меньше, но контроллеру это не важно. Если бы в панелях не были встроены диоды, тогда при малейшем затенении хотя бы кусочка 1 панели вся цепочка полностью бы переставала давать ток.

Иными словами, потери мощности будут соизмеримы с площадью затенения.

Диоды можно устанавливать параллельно всему модулю, а можно параллельно его отдельным рядам.

Здесь изображена схема, при которой каждый ряд ячеек, установленных в одном модуле, имеет свой диод. На практике же модуль чаще всего разделяется на 2 равные части.

HouzeR Пользователь FORUMHOUSE

Обычно для четырехрядной панели выводится средняя точка, то есть ячейки шунтируются пополам. Диоды ставят в клеммной коробке.

В любом случае, все модули солнечной панели следует располагать так, чтобы свет попадал на них равномерно. Тогда не придется решать проблему шунтирования отдельных модулей или даже ячеек.

Клеммные коробки для удобства располагают на тыльной стороне солнечных панелей.

Если несколько последовательно соединенных групп панелей подключается к контроллеру параллельно, то в этом случае каждая последовательная цепочка включается в общую цепь через развязывающий диод. Это позволяет избежать потерь при рассогласовании отдельных последовательных цепочек и дополнительно защитить аккумулятор от разряда в ночное время (если, вдруг, контроллер выйдет из строя).

Диоды подбираются по двум основным параметрам: по максимальной силе тока, которая будет проходить в прямом направлении (прямой ток), и по обратному напряжению. Максимальное напряжение обратного тока (Uобр.макс.) не должно привести к пробою диода. При этом рабочие характеристики диода должны немного превышать номинал панели (примерно в 1,3 – 1,5 раза).

Но здесь есть одна хитрость.

Мax94 Пользователь FORUMHOUSE

Нормальных Шоттки на большие напряжения не бывает. Это просто столбы с падением по прямому току. Так что лучше брать обычные с Urev. Max ≈ 30...100В.

Установка панелей

Как правильно крепить панели и где их устанавливать? Ответы на эти вопросы зависят от конструкции СБ и от возможностей их владельца. Единственное, о чем должны позаботиться все без исключения – это о соблюдении угла наклона. Для каждого региона этот угол будет свой, а зависит он напрямую от широты местности.

В среднем зимой угол наклона должен быть на 10°…15° выше оптимального значения, летом – на такую же величину – ниже. можно посмотреть в разделе FORUMHOUSE.

Сечение проводников

В соответствии с постулатами электротехники слишком малое сечение проводника может привести к его перегреву и даже к возгоранию. Слишком большое – это неплохо, но приведет к необоснованно завышенному удорожанию автономной системы. Поэтому задача ее создателя – найти «золотую середину».

Начнем с того, что самые толстые проводники следует устанавливать в цепи, соединяющий аккумулятор с инвертором (кстати, чем короче будет этот участок, тем лучше). Именно здесь протекают токи большой силы.

Проводники, соединяющие панели с инвертором, а также соединяющие панели между собой, можно выбирать с малым сечением. На этих участках цепи может присутствовать сравнительно высокое напряжение, но всегда будет малая сила тока.

HeliosHouse Пользователь FORUMHOUSE

16 мм² не нужно и 10 мм² не нужно. 4 – более чем достаточно. "Толстый" провод понадобится только в контуре инвертора, сечение нужно подбирать в соответствии с мощностью тока.

«Толстый» и «тонкий» – понятия растяжимые, поэтому не будем уходить от стандартов.

Учитывая, что алюминиевые проводники в домашних системах электроснабжения на сегодняшний день использовать запрещено, табличные данные распространяются на медные токопроводящие жилы с поливинилхлоридной или резиновой изоляцией.

Также, выбирая проводники, следует обращать внимание на рекомендации производителей инверторов, контроллеров и других устройств, задействованных в системе.

Защитные автоматы

В цепи солнечной электростанции, как и в цепи любого другого мощного источника электроэнергии, необходимо ставить защиту от коротких замыканий. В первую очередь автоматы или плавкие вставки должны защищать силовые кабели, идущие от аккумуляторных батарей к инвертору.

Leo2 Пользователь FORUMHOUSE

Если замкнет что в инверторе, то так и до пожара недалеко. Одно из требований к аккумуляторным системам – наличие автомата DC или плавкой вставки как минимум на одном из проводов и как можно ближе к клеммам аккумулятора.

Помимо этого, защита ставится в цепь аккумулятора и контроллера. Не стоит также пренебрегать защитой отдельных групп потребителей (потребителей постоянного тока, бытовых приборов и т. д.). Но это уже правило построения любой системы электроснабжения.

Автомат, устанавливаемый между аккумулятором и контроллером, должен иметь большой запас по току осечки. Иными словами, защита не должна сработать случайно (при увеличении нагрузки). Причина: если на ввод контроллера подается напряжение (от СБ), то в этот момент от него нельзя отключать аккумулятор. Это может привести к выходу устройства из строя.

Порядок подключения

Сборка электрической цепи происходит в следующем порядке:

  1. Подключение контроллера к аккумулятору.
  2. Подключение к контроллеру солнечных панелей.
  3. Подключение к контроллеру группы потребителей постоянного тока.
  4. Подключение инвертора к аккумуляторным батареям.
  5. Подключение нагрузки к выходу инвертора.

Подобная последовательность подключения поможет уберечь контроллер и инвертор от повреждений.

Вы можете узнать от участников нашего портала, посетив соответствующую тему. Тем, кого всерьез заинтересовала , мы рекомендуем посетить еще один полезный раздел, посвященный обмену опытом в этой области. В заключение предлагаем вашему вниманию видеосюжет, который расскажет о том, как правильно монтируются и подключаются солнечные батареи.