Различных материалов. Методическая разработка: Методическая разработка

ТЕМА: ОСНОВНЫЕ СВЕДЕНИЯ О МАТЕРИАЛАХ


1. Общие сведения

2. Физические свойства

3. Механические свойства

4. Химические свойства

5. Технологические испытания металлов и сплавов

6. Строение металлов, сплавов и жидких расплавов

Список литературы


1. Общие сведения

Мир по своей природе материален. Все, что нас окружает, называется материей. Атом, живая клетка, организм и т. п.- все это различные виды материи. Наблюдаемое многообразие явлений в природе представляет собой различные формы движущейся материи. Материя обладает разнообразными формами движения: жизненные процессы, химические превращения, электрический ток, нагревание и охлаждение и т. д. Материя не исчезает и не создается вновь, она только меняет свои формы. Одни формы движения материи могут переходить в другие. Например, механическое движение может переходить в тепловое, тепловое - в химическое, химическое - в электрическое, электрическое - в механическое и т. д.

Каждый отдельный вид материи, обладающий определенными составом и свойствами, называется веществом. Признаки, по которым различные вещества отличаются одно от другого, называются свойствами. Вещества различаются по цвету, агрегатному состоянию (твердое, жидкое или газообразное), плотности, температуре плавления и кипения и т. д. Чтобы охарактеризовать вещество, необходимо знать определенное количество - совокупность признаков - свойств, которыми оно обладает. Например, вещество, плотность которого равна 1000 кг/м 3 , температура кипения 100 °С и температура плавления 0°С,- вода Н 2 О. Свойства материалов определяются преимущественно в лабораторных условиях по специальным методикам, предусмотренным Государственными стандартами и техническими условиями.

Вещества могут быть простыми и сложными. Простые вещества (железо, медь, кислород, углерод и др.) состоят из атомов или ионов одного элемента. Сложные вещества (вода, углекислый газ, серная кислота, сталь и др.) состоят из молекул, образованных атомами или ионами разных элементов.

Вещества могут быть чистыми или находиться в виде смесей. Чистые вещества (простые и сложные) состоят из однородных молекул, атомов и ионов. Смеси состоят из различных простых и сложных веществ. Примером смеси является воздух, который состоит из молекул различных газов (азота, кислорода, углекислого газа и т. п.). Гранит - смесь, состоящая из кварца, слюды и полевого шпата.

Свойства материалов, применяемых в промышленном производстве, условно разделяют на физические, механические, химические, технологические и др.

2. Физические свойства

К физическим свойствам, зависящим от внутреннего строения материалов, относятся: плотность, пористость, теплопроводность, теплоемкость, электропроводность, тепловое (термическое) расширение, морозостойкость, огнеупорность, температура плавления и др.

Плотность - величина, равная отношению массы вещества к занимаемому им объему. По плотности металлы и сплавы делятся на две группы: легкие, плотность которых меньше 5000 кг/м 3 , и тяжелые, плотность которых больше 5000 кг/м 3 . К легким металлам относятся алюминий, магний, титан и сплавы на их основе, к тяжелым - медь, никель, цинк и сплавы на их основе. При производстве машин и механизмов, чтобы уменьшить их массу, используют металлы и сплавы меньшей плотности.

Пористость - степень заполнения объема материала порами.

Теплопроводность, теплоемкость, морозостойкость, водопоглощение зависят от пористости материалов.

Теплопроводность-способность материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур на противоположных поверхностях. Теплопроводность характеризуется количеством теплоты, проходящей в течение 1 ч через слой материала толщиной 1 м, площадью 1 м 2 , при разности температур на противоположных плоскопараллельных поверхностях в один градус. Теплопроводность зависит от внутреннего строения материала.

Высокая теплопроводность металлов и сплавов по сравнению с другими материалами объясняется тем, что тепловую энергию в металлах переносят свободные электроны, находящиеся в постоянном движении. Свободные электроны сталкиваются с колеблющимися ионами и обмениваются с ними энергией. Колебания ионов, усиливающиеся при нагревании, передаются электронами соседним ионам, при этом температура быстро выравнивается по всей массе металла. Чем больше теплопроводность металла, тем быстрее теплота при нагревании распространяется по всему объему. Это свойство учитывают при изготовлении нагревательных приборов, двигателей, которые нагреваются во время работы, при газовой резке металлов и сплавов, при обработке металлов режущим инструментом.

Теплопроводность имеет большое значение при выборе материалов для теплоограждающих конструкций, теплообменных аппаратов, изоляции труб.

Электропроводность - способность металлов и сплавов проводить электрический ток под действием внешнего электрического поля. Переносят электрический ток свободные электроны, поэтому тепло- и электропроводность у чистых металлов пропорциональны одна другой. Электропроводность металлов с повышением температуры уменьшается. Это объясняется тем, что при нагревании колебания ионов в металле усиливаются, а это мешает движению электронов. При низких температурах, когда колебания ионов уменьшаются, электропроводность резко увеличивается.

Высокой электропроводностью обладают серебро, алюминий, медь и сплавы на их основе, низкой - вольфрам, хром. Из металлов, хорошо проводящих электрический ток, делают электрические провода, токопроводящие детали электрических машин, а из металлов и сплавов, плохо проводящих электрический ток (обладающих большим электросопротивлением), изготовляют электронагревательные приборы, реостаты.

Теплоемкость - СВОЙСТВО материалов поглощать при нагревании определенное количество теплоты. Показанном теплоемкости служит удельная теплоемкость, равная количеству теплоты (в джоулях), которое необходимо для нагревания 1 кг материала на один градус. Удельная теплоемкость используется при расчете процессов нагрева или охлаждения материалов.

Водопоглощение-способность материала впитывать и удерживать в своих порах воду. Водоиоглощение материала зависит от его пористости; чем больше пористость, тем больше водопоглощение.

Насыщение материалов водой изменяет их свойства: увеличивается теплопроводность, снижается морозостойкость.

Влажность материала определяется отношением влаги, содержащейся в образце, к массе этого образца в сухом состоянии.

Водопроницаемость-способность материала пропускать через себя воду под давлением. Водопроницаемость характеризуется количеством воды, прошедшей через образец площадью 1 м 2 в течение 1 ч при постоянном давлении 1 Н и определенной толщине образца. Водопроницаемость зависит от пористости, плотности материала, формы и размеров пор.

Паро-, газопроницаемость - свойства, которые характеризуются количеством пара или газа (воздуха), прошедшего через образец определенных размеров при заданном давлении.

Морозостойкость - способность материала в насыщенном водой состоянии выдерживать многократное число циклов попеременного замораживания и оттаивания без видимых признаков разрушения и без значительного понижения прочности. Плотные материалы, а также материалы, обладающие малым водопоглощением, как правило, морозостойки. По числу выдерживаемых циклов попеременного замораживания и оттаивания (степени морозостойкости).

Тепловое (термическое) расширение - способность материалов изменять свои размеры в процессе нагревания при постоянном давлении. Это свойство учитывают при прокладке трубопроводов, рельсов железнодорожных путей. Длинные трубо- и паропроводы в нагретом состоянии значительно увеличивают свои размеры. Поэтому, чтобы трубопроводы могли свободно удлиняться, оставаясь невредимыми, делают специальные устройства - компенсаторы, которые воспринимают удлинение трубопроводов при тепловом расширении. На мостах устанавливают подвижные опоры. У зданий и сооружений большой протяженности предусматривают термические швы. Рельсы на крановых и железнодорожных путях укладывают с небольшими промежутками для свободного термического расширения.

Температура плавления - постоянная температура, при которой твердый материал переходит в жидкий расплав при нормальном давлении. Для отсчета темпе-ратуры применяют две шкалы: термодинамическую, где единицей измерения температуры служит кельвин (обозначается К), и международную практическую, где единицей измерения служит градус Цельсия (обозначается °С).

Температура плавления материалов зависит от прочности связи между молекулами, ионами и изменяется в очень широких пределах: например, температура плавления ртути-39°С, вольфрама+3410°С. Чистые металлы плавятся при определенных температурах, а большинство материалов в интервале температур.


Самосбрасывающих вагонетках работали безотказно, а пальцы для захвата рамок не были погнуты. Необходимо периодически покрывать антикоррозионными составами сушильные вагонетки и своевременно ремонтировать их. ОСНОВНЫЕ СВЕДЕНИЯ О ПРОЦЕССЕ СУШКИ Сушку кирпича производят только конвективным методом, т. е. методом, при котором влага испаряется вследствие теплового обмена между изделием и...

Разрешения на изготовление парового котла. В связи с изложенным, является необходимым умение выполнять один из наиболее сложных и ответственных разделов расчета прочности котла - расчет прочности укрепления одиночного отверстия в барабанах , , Более того, проблема в большей степени актуальна по причине употребления конструкций котлов с выполнением больших отверстий в барабанах. Существует...

    Введение

Уважаемые студенты мы приступаем к изучению курса «Общее материаловедение». Лекции, которые будут прочитаны в течение данного семестра, помогут Вам разобраться в физико-химической сущности строения и свойств различных материалов. Вы узнаете, почему природные и искусственно созданные материалы имеют различные теплопровод­ность, механические и эксплуатационные свойства, как связаны эти свойства друг с другом, как и в каких пределах их можно изме­нять. Одно­временно с изучением этих вопросов, вы более глубоко познакомитесь с физическими и химическими свойствами элемен­тов, информация о которых заложена в периодической системе Д.И. Менделеева. Особо отмечу, что строение атомов химиче­ских элементов определяет структуру и энергию образуемых ими химических связей, которые, в свою очередь, лежат в основе всего комплекса свойств веществ и материалов. Лишь опираясь на по­нимание химического взаимодействия атомов, можно управлять процессами, происходящими в веществах, и получать заданные рабочие характеристики.

Однако более важной, чем изучение отдельных проблем, изло­женных в лекциях, является предоставляемая вам возможность объединить основные положения физики, химии и прикладных научных направлений (теплофизи­ки, механики) для комплексного понимания взаимодействия веществ и их свойств.

В лекциях главное внимание уделено фундаментальным основам материалове­дения в связи с тем, что современное материаловедение направлено на получение ма­териалов с заданными характеристиками и служит базой для нау­коемких технологий XXI века.

Материалом называется вещество, обладающее необходимым комплексом свойств, для выполнения заданной функции отдельно или в совокупности с другими веществами.

Современное материаловедение полностью сложилось как нау­ка во второй половине XX века, что было связано с быстрым возрастанием роли материалов в развитии техники, тех­нологии и строительства. Создание принципиально новых материалов с заданными свойствами, а на их основе сложнейших конструкций по­зволило человечеству достичь за короткое время небывалых успе­хов в атомной и космической технике, электронике, информацион­ных технологиях, строительстве и т.д. Можно считать, что материаловедение - это раздел научного знания, посвященный свойствам веществ и их направленному изменению с целью получения материалов с заранее заданными рабочими характеристиками. Он опирается на фунда­ментальную базу всех разделов физики, химии, механики и смежных дисциплин и включает теоретические основы современных нау­коемких технологий получения, обработки и применения материа­лов. Основу материаловедения составляет знание о процессах, про­текающих в материалах под воздействием различных факторов, об их влиянии на комплекс свойств материала, о способах контроля и управления ими. Поэтому материаловедение и технология ма­териалов - взаимосвязанные разделы знания.

Курс материаловедения и технологии строительных мате­риалов служит цели познания природы и свойств ма­териалов, методов получения материалов с заданными ха­рактеристиками для наиболее эффективного использования в строительстве.

Основные задачи изучения курса:

Дать понимание физико-химической сущности явлений, происходящих в материалах при воздействии на них различных факторов в условиях производства и эксплуатации, и их влияния на свойства материалов;

Установить зависимость между химическим составом, строением и свойствами материалов;

Изучить теоретические основы и практику реализации раз­личных способов получения и обработки материалов, обеспечи­вающих высокую надежность и долговечность строительных конструкций;

Дать знания об основных группах неме­таллических материалов, их свойствах и областях применения.

В лекциях раскрываются:

Основы взаимодействия атомов и молекул, позволяющие в дальнейшем объяснить влияние на свойства материала его химиче­ского состава и процессов направленной обработки;

Строение твердого тела, дефекты кристаллической структуры и их роль в формировании свойств материалов;

Явления переноса тепла, массы и заряда, составляющие суть любого технологического процесса;

Теоретические основы получения аморфных структур мате­риалов;

Элементы механики упругой и пластической деформации и разрушения материала, лежащие в основе формирования прочности и надежности современных строительных материалов и конструкций, а также методы их испытаний;

Итак, задача современного материаловедения - получение материалов с заранее заданными свойства­ми. Свойства материалов определяются химическим составом и структурой, которые являются результатом получения материала и его дальнейшей обработки. Для разработки материалов и техноло­гий необходимо знание физических и химических явлений и процес­сов, протекающих в материале на различных стадиях его получения, обработки и эксплуатации, их предсказание, описание и управление ими. Таким образом, знание теории необходимо для создания управ­ляемых технологических процессов, результатом которых будет ма­териал с четко определенными значениями рабочих свойств.

Физико-химические свойства вещества определяются элек­тронным строением его атомов. Взаимодействия атомов связаны, в первую очередь, с взаимодействием их электронных оболочек. По­этому при разработке материалов и процессов их получения необ­ходимо четко представлять, как различные химические элементы отдают и принимают электроны, как изменение электронного со­стояния влияет на свойства элементов.

Давайте вспомним электронное строение атома .

Электронное строение атома

Около, двух с половиной тысяч лет древнегреческий философ Демокрит высказал мысль о том, что все окружающие нас тела состоят из мельчайших невидимых и неделимых частиц - атомов.

Из атомов, как из своеобразных кирпичиков собираются молекулы: из одинаковых атомов - молекулы простых, веществ, из атомов различного вида -молекулы сложных веществ.

Уже в конце девятнадцатого века наукой установлено, что атомы - частицы далеко не "неделимые", как представляла древняя философия, а, в свою очередь, состоят из ещё более мелких и, если так можно выразиться, ещё более простых частиц. В настоящее время с большей или меньшей достоверностью доказано существование уже около трех сотен элементарных частиц, входящих в состав атомов.

Для изучения химических превращений в большинстве случаев нам достаточно указать три частицы, входящие в атом: протон, электрон и нейтрон.

Протон представляет собой частицу массой условно принятой за единицу (1/12 массы атома углерода) и единичным положительным зарядом. Масса протона – 1,67252 х 10 -27 кг

Электрон - частица с практически нулевой массой (в 1836 раз меньшей, чем у протона) и единичным отрицательным зарядом. Масса электрона – 9,1091х10 -31 кг.

Нейтрон, представляет собой частицу с массой практически равной массе протона, но не имеющую заряда (нейтрален). Масса нейтрона – 1,67474 х 10 -27 кг.

Современная наука представляет атом, устроенным приблизительно, также как утроена наша солнечная система: в центре атома находится ядро (солнце), вокруг которого на относительно большом расстоянии вращаются электроны (как планеты вокруг солнца). Эта "планетарная" модель атома, предложенная в 1911 году Эрнестом Резерфордом и в 1913 году уточнённая постулатами Бора, сохранила своё значение до настоящего времени.

В ядре, состоящим из протонов и нейтронов и занимающем очень малую часть объема атома, сосредоточена основная масса атома (масса электронов в химических расчётах атомных и молекулярных масс обычно не учитывается).

Число протонов в ядре определяет вид атома. Всего сейчас открыто более ста видов атомов, которые и представлены в Таблице элементов под номерами, соответствующими числу протонов в ядре.

Простейший атом содержит в ядре всего один протон: это атом водорода. Более сложный атом гелия имеет в ядре уже два протона, третий (литий) - три и т.д. Определённый вид атома называется элементом.

2. Строение и свойства отделочных материалов

Внутреннее строение матерпалов

В зависимости от агрегатного состояния и устойчивости твердые вещества могут иметь строго упорядоченное строение – кристаллическое, или неупорядоченное, хаотическое строение – аморфное.

Природа частиц, находящихся в узлах кристаллической решетки, и преобладающие силы взаимодействия (химические связи) определяют характер кристаллической решетки: атомный с ковалентными связями, молекулярный с ван-дер-ваальсовыми и водородными связями, ионный с ионными связями, металлический с металлическими связями.

Атомная решетка состоит из нейтральных атомов, связанных между собой ковалентными связями. Вещества с ковалентными связями отличаются высокой твердостью, тугоплавкостью, нерастворимостью в воде и в большинстве других растворителях. Примером атомных решеток являются алмаз и графит. Энергия ковалентных связей составляет от 600 до 1000 кДж/моль

Молекулярная решетка построена их молекул (I 2 , Cl 2 , CO 2 и т.д.), связанных друг с другом межмолекулярными или водородными связями. Межмолекулярные связи имеют небольшую величину энергии, не более 10кДж/моль; несколько большую величину имеют водородные связи (20-80 кДж/моль), поэтому вещества с молекулярной решеткой имеют невысокую прочность, низкую температуру плавления, высокую летучесть. Такие вещества не проводят ток. К веществам с молекулярной решеткой относятся органические материалы, благородные газы, некоторые неорганические вещества.

Ионная решетка образуется атомами, сильно отличающимися по электроотрицательности. Она характерна для соединений щелочных и щелочноземельных металлов с галогенами. Ионные кристаллы могут состоять и из многоатомных ионов (например, фосфаты, сульфаты и пр.). В такой решетке каждый ион окружен определенным числом его противоионов. Например, в кристаллической решетке NаCl каждый ион натрия окружен шестью ионами хлора, а каждый ион хлора – шестью ионами натрия. Вследствие ненаправленности и ненасыщенности ионной связи кристалл можно рассматривать как гигантскую молекулу, а обычное понятие молекулы здесь утрачивает свой смысл. Вещества с ионной решеткой характеризуются высокой температурой плавления, малой летучестью, высокой прочностью и значительной энергией кристаллической решетки. Эти свойства сближают ионные кристаллы с атомными. Энергия связи ионной решетки примерно равна, по некоторым источникам меньше, энергии ковалентной решетки.

Металлические решетки образуют металлы. В узлах решеток находятся ионы металлов, а валентные электроны делокализованы по всему кристаллу. Такие кристаллы можно рассматривать как одну огромную молекулу с единой системой многоцентровых молекулярных орбиталей. Электроны находятся на связывающих орбиталях системы, а разрыхляющие орбитали образуют зону проводимости. Так как энергия связи связывающих и разрыхляющих орбиталей близка, электроны легко переходят в зону проводимости и перемещаются в пределах кристалла, образуя как бы электронный газ. В табл. 3.1 в качестве примера приведены энергии связи для кристаллов с разным типом связи.

Упорядоченное расположение частиц в кристалле сохраняется на больших расстояниях, а в случае идеально образованных кристаллов – во всем объеме материала. Такая упорядоченность строения твердых тел носит название дальний порядок.

Общие сведения о материалах и их свойствах

КРАТКИЕ СВЕДЕНИЯ О СТРОИТЕЛЬНЫХ МАТЕРИАЛАХ

Общие сведения о материалах и их свойствах

Виды основных строительных материалов. К основным строительным материалам относятся: лесные, природные каменные, керамические материалы и изделия, неорганические (минеральные) вяжущие вещества (цемент, глина, алебастр и пр.) и изделия из них, строительные растворы для кладки и штукатурки, искусственные каменные материалы и изделия на основе вяжущих, битумные и теплоизоляционные материалы, строительные металлы, металлические, изделия и лакокрасочные материалы. В последнее время в строительстве широко внедряются различные материалы, изготовляемые на основе пластических масс.

Основные свойства строительных материалов. Для правильного применения необходимо знать физико-механические и химические свойства строительных материалов, приведенные ниже.

Плотность - масса единицы объема материала в абсолютно плотном состоянии без пор и пустот, кг/м 3 ,

где - масса образца, кг; - объем образца в абсолютно плотном состоянии, м 3 .

Относительная плотность - отношение плотности строительного материала в естественном состоянии (с порами) к плотности абсолютно плотного тела или отношение объема материала в абсолютно плотном состоянии к его внешнему объему в естественном состоянии , отн. ед.,

Относительная плотность может быть выражена и в процентах:

Насыпная плотность - это масса единицы объема рыхлого материала, насыпанного в какую-либо тару без уплотнения.

Пористость - степень заполнения объема материала порами.

Относительная плотность и пористость в сумме равны единице, т.е.

Или

Водопоглощение - свойство материала впитывать и удерживать в себе воду. Водопоглощение определяется по разности масс образца материала в насыщенном водой и в абсолютно сухом состоянии и выражается в процентах от массы сухого материала.

Влажность - содержание воды в материале (по массе), выраженное в %.

Водопроницаемость - способность материала пропускать воду под давлением. Степень водопроницаемости измеряется количеством воды, прошедшей за 1 с через 1 м 2 поверхности материала при заданном постоянном давлении.

Морозостойкость - способность материала в насыщенном водой состоянии выдерживать многократные попеременные замораживания и оттаивания без заметных признаков разрушения и без значительного понижения прочности. От морозостойкости материала зависит долговечность многих элементов здания.

Теплопроводность - способность материала передавать через свою толщу тепловой поток, возникающий при наличии разности температур на ограничивающих его поверхностях. Теплопроводность измеряется в килоджоулях (кДж).

Общее количество теплоты , кДж, прошедшее через ограждение, может быть выражено формулой

где - коэффициент теплопроводности материала, кВт/м·°С;

Площадь ограждения, м 2 ;

Толщина ограждения, м;

Разность температур на противоположных поверхностях ограждения, °С;

Время, с.

Полагая , , , , получим значение коэффициента теплопроводности

который для данного материала зависит от его физических свойств (пористости, влажности, плотности и т.п.)

Теплоемкость - свойство материала поглощать тепло при нагревании и отдавать его при охлаждении. Теплоемкость измеряется величиной коэффициента теплоемкости С (называемым иногда удельной теплоемкостью), который представляет собой количество тепла в Дж, необходимое для нагревания 1 кг данного материала на 1°С.

Огнестойкость - способность материалов выдерживать без разрушения действие высоких температур. По огнестойкости строительные материалы делятся на три группы:

Несгораемые, (бетон, кирпич), под воздействием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются;

Трудносгораемые (фибролит, асфальтовый бетон), под воздействием огня или высокой температуры трудно воспламеняются, обугливаются или тлеют; после удаления огня тление прекращается;

Сгораемые (дерево и др.), под воздействием огня воспламеняются и продолжают гореть или тлеть после удаления источника огня. Некоторые материалы этой группы воспламеняются при воздействии высокой температуры.

Огнеупорность - способность материалов противостоять длительному воздействию высоких температур, не размягчаясь и деформируясь.

Химическая стойкость - способность материалов сопротивляться действию кислот, щелочей, солей, растворенных в воде.

Прочность - способность материала сопротивляться разрушению под действием внутренних напряжений, возникающих в нем от нагрузки или других факторов и вызывающих сжатие, растяжение, срез, изгиб или кручение. Например, прочность материала при сжатии и растяжении оценивают величиной предела прочности R, Па, определяемой по формуле

F- площадь сечения образца, м 2 .

Таким образом, предел прочности - это напряжение, соответствующее нагрузке, вызывающей разрушение образца материала.

Твердость - способность материала сопротивляться проникновению (внедрению) в него другого, более твердого тела.

Упругость - способность материала деформироваться и вновь восстанавливать свою первоначальную форму и размеры после снятия нагрузки, под действием которой она в той или другой мере изменялась.

Пластичность - способность материала под влиянием действующих на него нагрузок изменять размеры и форму в значительных пределах без образования трещин и нарушения прочности и сохранять принятую форму после их снятия.

Хрупкость - свойство материала под действием внешних сил разрушаться внезапно, без предварительной деформации.

Выпускаемые строительные материалы должны соответствовать государственным стандартам (ГОСТам), представляющим собой официально утвержденные документы, в которых содержится полное описание материала, изделия или детали. ГОСТами устанавливаются требования, которым должны отвечать строительные материалы, и правила их приемки.

Лесные материалы

Строение древесины. При рассмотрении поперечного разреза древесного ствола можно различать в нем следующие части: кору, камбий, собственно древесину и сердцевину.

Кора состоит из наружного слоя - корки и внутреннего - луба. Под слоем луба находится тонкий слой камбия. За камбием располагается толстый слой древесины, состоящий из ряда тонких концентрических колец. Каждое такое кольцо соответствует одному году жизни дерева и носит название годичного кольца.

В центре ствола находится сердцевина. У сосны, дуба и кедра ядро имеет более темную окраску; у ели, пихты, бука центральная часть ствола не отличается по цвету от наружной и носит название «спелой древесины». Имеются породы деревьев, у которых ядро отсутствует (береза; клен; ольха); такие породы называют заболонными.

Свойства древесины. Влажность. Большое влияние на технические свойства древесины оказывает ее влажность. По степени влажности различают древесину: мокрую (влажность больше, чем у свежесрубленной), свежесрубленную (влажность 35% и более), воздушно-сухую (влажность 20-15%) и комнатно-сухую (влажность 13-8%).

Усушка и разбухание. Изменение влажности древесины вызывает изменение ее объема, что ведет к усушке или разбуханию. Вследствие неоднородности строения древесина усыхает и разбухает в различных направлениях неодинаково, что влечет за собой коробление или появление трещин в конструкциях. Поэтому следует применять древесину с влажностью, соответствующей условиям ее эксплуатации; для этого производится естественная или искусственная сушка.

Механические свойства древесины. Прочность древесины в различных направлениях неодинакова. Так, прочность древесины при растяжении вдоль волокна в 20-30 раз больше, чем поперек волокна. Такое же явление наблюдается и при сжатии древесины.

Основные древесные породы, применяемые в строительстве.

В строительстве наибольшее применение имеют хвойные породы: сосна, ель, лиственница, пихта, кедр. Лиственные породы: дуб, бук, ясень, березу, клен, чинару, грушу и др. - применяют, главным образом, для изготовления столярных изделий и для внутренней отделки зданий. В целях экономии ценных пород леса там, где это возможно, и особенно для временного и подсобного строительства следует применять такие лиственные породы как ольха, липа, осина и тополь.

Сортамент лесных материалов. Круглый лес в зависимости от его диаметра в верхнем торце (отрубе) подразделяется на бревна, подтоварник и жерди. Бревна в верхнем отрубе должны иметь диаметр не менее 120 мм, подтоварник от 80 до ПО мм и жерди от 30 до 70 мм. Пиломатериалы получают путем продольной распиловки бревен. В зависимости от качества древесины и наличия пороков пиломатериалы из хвойных пород делятся на 5 сортов.

В строительстве применяют пиломатериалы следующих видов (рис. 2.1): пластины, четвертины, горбыль, доски (ширина более двойной толщины); бруски и брусья (ширина не более двойной толщины). В зависимости от чистоты кромок, доски делят на необрезные, полуобрезные и обрезные.


Длина досок и брусьев установлена от 1 до 6,5 м с градацией через 0,25 м. В зависимости от способа обработки брусья различают: двухкантные - опиленные с двух сторон - и четырехбитные - опиленные с четырех сторон.