Решение дифференциальных уравнений бернулли примеры. Дифференциальное уравнение бернулли

Характеристика уравнения Бернулли

Определение 1

Дифференциальное уравнение первого порядка, имеющее стандартный вид $y"+P\left(x\right)\cdot y=Q\left(x\right)\cdot y^{n}$, где $P\left(x\right)$ и $Q\left(x\right)$ - непрерывные функции, а $n$ - некоторое число, называется дифференциальным уравнением Якоба Бернулли.

При этом на число $n$ накладываются ограничения:

  • $n\ne 0$, так как при $n = 0$ дифференциальное уравнение представляет собой линейное неоднородное, и какой-то иной специальный метод решения в этом случае не нужен;
  • $n\ne 1$, так как если мы имеем в качестве $n$ единицу, дифференциальное уравнение представляет собой линейное однородное, метод решения которого также известен.

Кроме того, не рассматривается специально тривиальное решение дифференциального уравнения Бернулли $y=0$.

Не следует путать дифференциальное уравнение математика Якоба Бернулли с законом Бернулли, названным в честь дяди его племянника, известного как Даниил Бернулли.

Замечание 1

Даниил Бернулли - физик, наиболее известная найденная им закономерность состоит в описании взаимосвязи скорости потока жидкости и давления. Закон Бернулли также применим и для ламинарных течений газа. В целом он применяется в гидравлике и гидродинамике.

Решение уравнения Бернулли сведением к линейному неоднородному

Основной метод решения дифференциального уравнения Бернулли состоит в том, что посредством преобразований оно приводится к линейному неоднородному. Эти преобразования следующие:

  1. Умножаем уравнение на число $y^{-n} $ и получаем $y^{-n} \cdot y"+P\left(x\right)\cdot y^{1-n} =Q\left(x\right)$.
  2. Применяем замену $z=y^{1-n} $ и дифференцируем это равенство как сложную степенную функцию; получаем $z"=\left(1-n\right)\cdot y^{-n} \cdot y"$, откуда $\frac{z"}{1-n} =y^{-n} \cdot y"$.
  3. Подставляем значения $y^{1-n} $ и $y^{-n} \cdot y"$ в данное дифференциальное уравнение и получаем $\frac{z"}{1-n} +P\left(x\right)\cdot z=Q\left(x\right)$ или $z"+\left(1-n\right)\cdot P\left(x\right)\cdot z=\left(1-n\right)\cdot Q\left(x\right)$.

Полученное дифференциальное уравнение является линейным неоднородным относительно функции $z$, которое решаем следующим образом:

  1. Вычисляем интеграл $I_{1} =\int \left(1-n\right)\cdot P\left(x\right)\cdot dx $, записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $, выполняем упрощающие преобразования и выбираем для $v\left(x\right)$ простейший ненулевой вариант.
  2. Вычисляем интеграл $I_{2} =\int \frac{\left(1-n\right)\cdot Q\left(x\right)}{v\left(x\right)} \cdot dx $, посля чего записываем выражение в виде $u\left(x,C\right)=I_{2} +C$.
  3. Записываем общее решение линейного неоднородного дифференциального уравнения в виде $z=u\left(x,C\right)\cdot v\left(x\right)$.
  4. Возвращаемся к функции $y$, заменяя $z$ на $y^{1-n} $, и при необходимости выполняем упрощающие преобразования.

Пример:

Найти общее решение дифференциального уравнения $\frac{dy}{dx} +\frac{y}{x} =y^{2} \cdot \left(4-x^{2} \right)$. Записать частное решение, удовлетворяющее начальному условию $y=1$ при $x=1$.

В данном случае имеем дифференциальное уравнение Бернулли, представленное в стандартном виде.

При этом $n=2$, $P\left(x\right)=\frac{1}{x} $, $Q\left(x\right)=4-x^{2} $.

Представляем его в форме относительно замены $z$:

$z"+\left(1-2\right)\cdot \frac{1}{x} \cdot z=\left(1-2\right)\cdot \left(4-x^{2} \right)$ или $z"-\frac{1}{x} \cdot z=-\left(4-x^{2} \right)$.

Полученное дифференциальное уравнение является линейным неоднородным относительно функции $z$, которое решаем описанным выше методом.

Вычисляем интеграл $I_{1} =\int \left(1-n\right)\cdot P\left(x\right)\cdot dx $.

Имеем $I_{1} =\int \left(1-2\right)\cdot \frac{1}{x} \cdot dx =-\ln \left|x\right|$.

Записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $ и выполняем упрощающие преобразования: $v\left(x\right)=e^{\ln \left|x\right|} $; $\ln v\left(x\right)=\ln \left|x\right|$; $v\left(x\right)=\left|x\right|$.

Выбираем для $v\left(x\right)$ простейший ненулевой вариант: $v\left(x\right)=x$.

Вычисляем интеграл $I_{2} =\int \frac{\left(1-n\right)\cdot Q\left(x\right)}{v\left(x\right)} \cdot dx $.

Записываем выражение в виде $u\left(x,C\right)=I_{2} +C$, то есть $u\left(x,C\right)=\frac{x^{2} }{2} -4\cdot \ln \left|x\right|+C$.

Окончательно записываем общее решение линейного неоднородного дифференциального уравнения относительно функции $z$ в виде $z=u\left(x,C\right)\cdot v\left(x\right)$, то есть $z=\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$.

Теперь возвращаемся к функции $y$, заменяя $z$ на $y^{1-n} $:

$y^{1-2} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$ или $\frac{1}{y} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$.

Это и есть общее решение данного дифференциального уравнения Бернулли, записанное в неявной форме.

Для поиска частного решения используем данное начальное условие $y=1$ при $x=1$:

Следовательно, частное решение имеет вид: $\frac{1}{y} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+\frac{x}{2} $.

Решение дифференциального уравнения Бернулли методом подстановки

Второе возможное решение уравнения Бернулли состоит в методе подстановки.

Пример:

Найти общее решение дифференциального уравнения $y"+\frac{y}{x} =y^{2} \cdot \left(4-x^{2} \right)$ методом подстановки.

Применяем подстановку $y=u\cdot v$.

После дифференцирования получаем:

Функцию $v\left(x\right)$ находим из уравнения $v"+\frac{v}{x} =0$, для этого переносим второе слагаемое в правую часть.

Получаем:

$\frac{dv}{dx} =-\frac{v}{x} $;

разделяем переменные $\frac{dv}{v} =-\frac{dx}{x} $;

интегрируем $\ln \left|v\right|=-\ln \left|x\right|$, откуда $v=\frac{1}{x} $.

Функцию $u\left(x\right)$ находим из уравнения $u"\cdot \frac{1}{x} =u^{2} \cdot \frac{1}{x^{2} } \cdot \left(4-x^{2} \right)$, в котором учтено $v=\frac{1}{x} $ и $v"+\frac{v}{x} =0$.

После простых преобразований получаем: $u"=u^{2} \cdot \frac{1}{x} \cdot \left(4-x^{2} \right)$.

Разделяем переменные: $\frac{du}{u^{2} } =\frac{1}{x} \cdot \left(4-x^{2} \right)\cdot dx$.

Интегрируем: $-\frac{1}{u} =4\cdot \ln \left|x\right|-\frac{x^{2} }{2} +C$ или $\frac{1}{u} =\frac{x^{2} }{2} -4\cdot \ln \left|x\right|+C$.

Возвращаемся к старой переменной. Учитываем, что $y=u\cdot v$ или $y=u\cdot \frac{1}{x} $, откуда $u=x\cdot y$.

Получаем общее решение данного дифференциального уравнения: $\frac{1}{y} =\frac{x^{3} }{2} -4\cdot x\cdot \ln \left|x\right|+C\cdot x$.

Дифференциальное уравнение Бернулли - это уравнение вида:
, где n ≠ 0 , n ≠ 1 , p и q - функции от x .

Решение дифференциального уравнения Бернулли приведением к линейному уравнению

Рассмотрим дифференциальное уравнение Бернулли:
(1) ,
где n ≠ 0 , n ≠ 1 , p и q - функции от x .
Разделим его на y n . При y ≠ 0 или n < 0 имеем:
(2) .
Это уравнение сводится к линейному с помощью замены переменной:
.
Покажем это. По правилу дифференцирования сложной функции:
;
.
Подставим в (2) и преобразуем:
;
.
Это - линейное , относительно z , дифференциальное уравнение. После его решения, при n > 0 , следует рассмотреть случай y = 0 . При n > 0 , y = 0 также является решением уравнения (1) и должно входить в ответ.

Решение методом Бернулли

Рассматриваемое уравнение (1) также можно решить методом Бернулли . Для этого ищем решение исходного уравнения в виде произведения двух функций:
y = u·v ,
где u и v - функции от x . Дифференцируем по x :
y′ = u′ v + u v′ .
Подставляем в исходное уравнение (1) :
;
(3) .
В качестве v возьмем любое, отличное от нуля, решение уравнения:
(4) .
Уравнение (4) - это уравнение с разделяющимися переменными . Решаем его и находим частное решение v = v(x) . Подставляем частное решение в (3) . Поскольку оно удовлетворяет уравнению (4) , то выражение в круглых скобках обращается в нуль. Получаем:
;
.
Здесь v - уже известная функция от x . Это уравнение с разделяющимися переменными. Находим его общее решение, а вместе с ним и решение исходного уравнения y = uv .

Пример решения дифференциального уравнения Бернулли

Решить уравнение

Решение

На первый взгляд, кажется, что это дифференциальное уравнение не похоже на уравнение Бернулли. Если считать x независимой переменной, а y - зависимой (то есть если y - это функция от x ), то это так. Но если считать y независимой переменной, а x - зависимой, то легко увидеть, что это - уравнение Бернулли.

Итак, считаем что x является функцией от y . Подставим и умножим на :
;
;
(П.1) .
Это - уравнение Бернулли с n = 2 . Оно отличается от рассмотренного выше, уравнения (1) , только обозначением переменных (x вместо y ). Решаем методом Бернулли. Делаем подстановку:
x = u v ,
где u и v - функции от y . Дифференцируем по y :
.
Подставим в (П.1) :
;
(П.2) .
Ищем любую, отличную от нуля функцию v(y) , удовлетворяющую уравнению:
(П.3) .
Разделяем переменные :
;
;
.
Положим C = 0 , поскольку нам нужно любое решение уравнения (П.3) .
;
.
Подставим в (П.2) учитывая, что выражение в скобках равно нулю (ввиду (П.3) ):
;
;
.
Разделяем переменные. При u ≠ 0 имеем:
;
(П.4) ;
.
Во втором интеграле делаем подстановку :
;
.

Дифференциальное уравнение y" +a 0 (x)y=b(x)y n называется уравнением Бернулли .
Так как при n=0 получается линейное уравнение, а при n=1 - с разделяющимися переменными, то предположим, что n ≠ 0 и n ≠ 1. Разделим обе части (1) на y n . Тогда Положив , имеем . Подставляя это выражение, получим , или, что то же самое, z" + (1-n)a 0 (x)z = (1-n)b(x). Это линейное уравнение, которое мы решать умеем.

Назначение сервиса . Онлайн калькулятор можно использовать для проверки решения дифференциальных уравнений Бернулли .

=


Пример 1 . Найти общее решение уравнения y" + 2xy = 2xy 3 . Это уравнение Бернулли при n=3. Разделив обе части уравнения на y 3 получаем Делаем замену Тогда и поэтому уравнение переписывается в виде -z" + 4xz = 4x. Решая это уравнение методом вариации произвольной постоянной , получаем откуда или, что то же самое, .

Пример 2 . y"+y+y 2 =0
y"+y = -y 2

Разделим на y 2
y"/y 2 + 1/y = -1

Делаем замену:
z=1/y n-1 , т.е. z = 1/y 2-1 = 1/y
z = 1/y
z"= -y"/y 2

Получаем: -z" + z = -1 или z" - z = 1

Пример 3 . xy’+2y+x 5 y 3 e x =0
Решение.
а) Решение через уравнение Бернулли.
Представим в виде: xy’+2y=-x 5 y 3 e x . Это уравнение Бернулли при n=3 . Разделив обе части уравнения на y 3 получаем: xy"/y 3 +2/y 2 =-x 5 e x . Делаем замену: z=1/y 2 . Тогда z"=-2/y 3 и поэтому уравнение переписывается в виде: -xz"/2+2z=-x 5 e x . Это неоднородное уравнение. Рассмотрим соответствующее однородное уравнение: -xz"/2+2z=0
1. Решая его, получаем: z"=4z/x

Интегрируя, получаем:
ln(z) = 4ln(z)
z=x 4 . Ищем теперь решение исходного уравнения в виде: y(x) = C(x)x 4 , y"(x) = C(x)"x 4 + C(x)(x 4)"
-x/2(4C(x) x 3 +C(x)" x 4)+2y=-x 5 e x
-C(x)" x 5 /2 = -x 5 e x или C(x)" = 2e x . Интегрируя, получаем: C(x) = ∫2e x dx = 2e x +C
Из условия y(x)=C(x)y, получаем: y(x) = C(x)y = x 4 (C+2e x) или y = Cx 4 +2x 4 e x . Поскольку z=1/y 2 , то получим: 1/y 2 = Cx 4 +2x 4 e x

Уравнение вида y’ + Р(х)у = Q(x), где Р(х) и Q(x) – известные функции от х, линейные относительно функции у и её производной y’, называется линейным дифференциальным уравнением первого порядка.

Если q(x)=0, уравнение называется линейным однородным уравнением. q(x)=0 – линейное неоднородное уравнение.

Линейное уравнение приводится к двум уравнениям с разделяющимися переменными при помощи подстановки у = u*v, где u = u(х) и v = v(x) – некоторые вспомогательные непрерывные функции.

Итак, у = u*v, у’ = u’*v + u * v’ (1),

тогда исходное уравнение перепишем в виде: u’*v + u * v’ + Р(х)*v = Q(x) (2).

Так как неизвестная функция у ищется в виде произведения двух функций, то одна из них может быть выбрана произвольно, другая – определяться уравнением (2).

Выберем так, чтобы v’ + Р(х)*v = 0 (3). Для этого достаточно, чтобы v(x) была частным решением уравнения (3) (при С = 0). Найдём это решение:

V*P(x) ; = -;ln |v| = -;v = (4)

Подставляя функцию (4) в уравнение (2), получим второе уравнение с разделяющимися переменными, из которого находим функцию u(x):

u’ * = Q(x) ; du = Q(x) *; u =+ C (5)

Окончательно получаем:

y(x) = u(x)*v(x) = *(+C)

Уравнение Бернулли: y ’ + y = x * y 3

Данное уравнение имеет вид: y’ + Р(х)*у = y’’ * Q(x), где Р(х) и Q(x) – непрерывные функции.

Если n = 0, то уравнение Бернулли становится линейным дифф.уравнением. Если n = 1, уравнение преобразуется в уравнение с разделяющимися переменными.

В общем случае, когда n ≠ 0, 1, ур. Бернулли сводится к линейному дифф.уравнению с помощью подстановки: z = y 1- n

Новое дифф.уравнение для ф-ции z(x) имеет вид: z" + (1-n)P(x)z = (1-n)Q(x) и может быть решено теми же способами, что и линейные дифф.уравнения 1-ого порядка.

20. Дифференциальные уравнения высших порядков.

Рассмотрим уравнение, не содержащие функцию в явном виде:

Порядок этого уравнения понижается на единицу с помощью подстановки:

Действительно, тогда:

И мы получили уравнение, в котором порядок понижен на единицу:

Дифф. уравнения порядка выше второго имеют вид и , где - действительные числа, а функция f(x) непрерывна на интервале интегрирования X .

Аналитически решить такие уравнения далеко не всегда возможно и обычно используют приближенные методы. Однако в некоторых случаях возможно отыскать общее решение.

Теорема.

Общим решением y 0 линейного однородного дифференциального уравнения на интервале X с непрерывными коэффициентами на X является линейная комбинация n линейно независимых частных решений ЛОДУ с произвольными постоянными коэффициентами , то есть .

Теорема.

Общее решение y линейного неоднородного дифференциального

уравнения на интервале X с непрерывными на том же

промежутке X коэффициентами и функцией f(x) представляет собой сумму ,

где y 0 - общее решение соответствующего ЛОДУ , а - какое-нибудь частное решение исходного ЛНДУ.

Таким образом, общее решение линейного неоднородного дифференциального уравнения с постоянными

коэффициентами ищем в виде , где - какое-нибудь

его частное решение, а – общее решение соответствующего однородного дифференциального

уравнения .

21. Испытания и события. Виды событий. Примеры.

Испытание – создание определённого комплекса условий для совершения событий. Пример: бросание игральной кости

Событие – появление\непоявление того или иного исхода испытания; результат испытания. Пример: выпадение числа 2

Случайное событие – событие, которое может произойти или не произойти при данном испытании. Пример: выпадение числа, большего чем 5

Достоверное – событие, которое неизбежно происходит при данном испытании. Пример: выпадение числа, большего или равного 1

Возможное – событие, которое может произойти при данном испытании. Пример: выпадение числа 6

Невозможное – событие, которое не может произойти при данном испытании. Пример: выпадение числа 7

Пусть А – некоторое событие. Под событием, противоположным ему, будем понимать событие, состоящее в ненаступлении события А. Обозначение: Ᾱ. Пример: А – выпадение числа 2, Ᾱ - выпадение любого другого числа

События А и В несовместны, если наступление одного из них исключает наступление другого в одном и том же испытании. Пример: выпадение при одном броске чисел 1 и 3.

События А и В называются совместными, если они могут появиться в одном испытании. Пример: выпадение при одном броске числа, большего, чем 2, и числа 4.

22. Полная группа событий. Примеры.

Полная группа событий – события A, B, C, D, …, L, которые принято считать единственно возможными, если в результате каждого испытания хотя бы одно из них обязательно наступит. Пример: выпадение на игральной кости числа 1, числа 2, 3, 4, 5, 6.

23. Частота события. Статистическое определение вероятности.

Пусть проведено n испытаний, причём событие А наступило m раз. Такое отношение m:n является частотой наступления события А.

Опр. Вероятность случайного события – связанное с данным событием постоянное число, вокруг которого колеблется частота наступления этого события в длинных сериях испытаний.

Вероятность вычисляется до опыта, а частота – после него.

24. Классическое определение вероятности. Свойства вероятности события.

Вероятностью события х называется отношение числа исходов, благоприятствующих событию А, к общему числу всех равновозможных попарно несовместных и единственно возможных исходов опыта. Р(А) =

Свойства вероятности события:

Для любого события А 0<=m<=n

Поделив каждый член на n, получим для вероятности любого события А: 0<=Р(А) <=1

Если m=0, то событие невозможно: Р(А)=0

Если m=n, то событие достоверно: Р(А)=1

Если m

25. Геометрическое определение вероятности. Примеры.

Классическое определение вероятности требует рассмотрение конечного числа элементарных исходов, причем равновозможных. Но на практике часто встречаются испытания, число возможных исходов которых бесконечно.

Опр . Если точка случайным образом появляется одномерной\ двумерно\ или 3х мерной области меры S (мера – ее длина, площадь или объём) то вероятность ее появления в части этой области меры S равна

где S – геометрическая мера, выражающая общее число всех возможных и равновозможных исходов данного испытания, а Si – мера, выражающая количество благоприятствующих событию A исходов.

Пример 1. Круг радиусом R помещен меньший круг радиусом г. Найти вероятность того, что точка, наудачу брошенная в больший круг, попадет также и в малый круг.

Пример 2. Пусть отрезок длиной l включается в отрезок длиной L. Най ти вероятность события А «наудачу брошенная точка попала на отрезок длиной l».

Пример 3 . В круге произвольно выбирается точка. Какова вероятность того, что ее расстояние до центра круга больше половины?

Пример 4. Два лица и условились встретиться в определённом месте между двумя и тремя часами дня. Пришедший первым ждет другого в течение 10 минут, после чего уходит. Чему равна вероятность встречи этих лиц, если каждый из них может прийти в любое время в течение указанного часа независимо от другого?

26. Элементы комбинаторики: Размещение, перестановка, сочетания.

1) Перестановкой называется установленный в конечном множестве порядок.

Число всех различных перестановок вычисляется по формуле

2) Размещением из n элементов по m называется всякое упорядоченное подмножество основного множества, содержащее m элементов.

3) Сочетанием из n элементов по m называется всякое неупорядоченное подмножество основного множества, содержащее элементов.