Основы геологии нефти и газа. V

Целью поисково-разведочных работ является выявление, оценка запасов и подготовка к разработке промышленных залежей нефти и газа. В ходе поисково-разведочных работ применяются: Геологические методы . Геологи выезжают в исследуемый район и осущ.ют полевые работы: изучают пласты горных пород, выходящие на дневную поверхность, их состав и углы наклона. По возвращении домой обрабатывают материалы. Итогом -геологическая карта и геологические разрезы местности. Геологическая карта – это проекция выходов горных пород на дневную поверхность. Антиклиналь на геологической карте имеет вид овального пятна, в центре которого располагаются более древние породы, а на периферии –более молодые. Геофизические методы: сейсморазведка, электроразведка и магниторазведка. Сейсмическая разведка основана на использовании закономерностей распространения в земной коре искусственно создаваемых упругих волн. Электрическая разведка основана на различной электропроводности горных пород.Магниторазведка основана на различной магнитной проницаемости горных пород. К Гидрогеохимическим методам относят газовую, люминесцетно-биту-монологическую, радиоактивную съемки и гидрохимический метод. Бурение и исследования скважин применяют с целью оконтуривания залежей, а также определения глубины залегания и мощности нефтегазоносных пластов. Анализ керна позволяет определить его нефтегазоностность.

8.Роль буровых работ на различных стадиях освоения ресурсов нефти и газа.

Бурение - один из совершеннейших на сегодняшний день способов строительства канала, соединяющего продуктивный пласт с дневной поверхностью. Посредством бурения сооружается скважина, бурильной установки и технологического оборудования производятся специальные работы (доставка специального инструмента, геофизического оборудования, испытание пластов и т.д.), производится заканчивание: выполняется спуск промежуточных, эксплуатационных колонн и насосно-компрессорных труб, перфораторов и насосов. Кроме этого, при помощи бурения производится ремонт скважин. Но разведка скважины тоже может производиться посредством бурения.

9. Этапы поисково-разведочных работ

Поисково-разведочные работы выполняются в два этапа:поисковый и разведочный. Поисковыйэтап включает три стадии: 1) региональные геологогеофизические работы; 2) подготовка площадей к глубокому поисковому бурению; 3) поиски месторождений. На первой выявляются возможные нефтегазоносные зоны, дается оценка их запасов и устанавливаются районы для поисковых работ. На второй стадии производится более детальное изучение.(сейсморазведке). На третьей стадии производится бурение поисковых скважин с целью открытия месторождений. Первые скважины бурят на максимальную глубину. В результате делается предварительная оценка запасов и даются рекомендации по их дальнейшей разведке. Разведочныйэтап осуществляется в одну стадию. Основная цель этого этапа– подготовка месторождений к разработке. Должны быть оконтурены залежи, коллекторские свойства продуктивных горизонтов. Позавершении разведочных работ подсчитываются промышленные запасы и даютсярекомендации по вводу месторождений в разработку. В настоящее время врамках поискового этапа широко применяются съемки из космоса.

Поиски и разведка месторождений нефти и газа

Геологоразведочные работы на нефть и газ, так же как и на другие полезные ископаемые, проводятся в 2 этапа. Сначала проводят работы, цель которых заключается отыскании новых месторождений. Их называют поисковыми. После открытия месторождения на нефти и газа на нем проводят работы, нацеленные на определения геологических запасов нефти или газа и условий его разработки. Их называют - разведочными.

В чем состоят их особенности поисков и разведки залежей нефти и газа? В отличие от залежей многих других полезных ископаемых, залежи нефти и газа всегда скрыты под осадочными напластованиями различной мощности. Поиски их в настоящее время осуществляется на глубинах от 2-3 до 8-9 км, поэтому открытые залежей возможно только путем бурения скважин.

Другая важная особенность залежей нефти и газа состоит в том, что они связаны с определенными типами тектонических или седиментационных структур, которое определяют возможное наличие природных ловушек в проницаемых пластах и толщах. К первым относятся различного вида куполовидные или антиклинальные складки , ко вторым относятся рифогенные и эрозионные выступы, песчаные линзы, зоны выклинивания и стратиграфического срезания.

Постановка дорогостоящего поискового бурения на площади должна быть обоснована положительной оценкой перспектив её промышленной нефтигазоностности. Такая оценка складывается из положительных результатов геолого-геофизических работ на площади, выявляющих благоприятную тектоническую или седиментацинную структуру, а также из положительной оценки перспектив нефтигазоностности той структурно - фациональной зоны, к которой эта площадь относятся. Процедура оценки перспектив нефтигазоностности упрощается, если в данной зоне уже вывялены и разведаны месторождения того же типа, что и предлагаемое и усложняется, если это новая зона или поиски нефти и газа в этой зоне пока еще пока не увенчалась успехом. В первом и особенно во втором случае необходимо обоснования перспектив зоны в целом.

Разведка нефтяных и газовых месторождений , так же как и выявления их, осуществляется при помощи бурения и испытания на приток скважин, которые в этом случае называются разведочными . Каждая промышленная залежь месторождения разведуется и оценивается отдельно, хотя для разведки залежей могут, использованы одни и те же скважины. Основным параметром залежи является её запасы, размеры которых в значительной мере определяются размерами ловушки. Различают геологические и извлекаемые запасы. Геологическими запасами нефти и газа называют количество этих полезных ископаемых, находящихся в залежи. Объем нефти и газа в залежи существенно отличается от того объема, который они занимают на поверхности. Объем жидкой фазы углеводородов в залежи несколько больше того объема, который они занимают на поверхности. Это объясняется температурным расширением жидкости в недрах и главным образом переходом части газообразных углеводородов в жидкую фазу. Объем природного газа в залежи возрастает прямо пропорционально пластовому давлению. Таким образом, для оценки геологических запасов нефти и газа в залежи необходимо знание не только формы, размеров залежи и порового объема нефтегазонасыщенных пород, но и физико-химических свойств этих полезных ископаемых по глубинным и поверхностным пробам, а также термодинамических условий пласта (температура, пластовое давление).

Извлекаемыми запасами называют количество нефти и газа приведенное к атмосферным условиям, которое может быть извлечено из залежи современными методами добычи. Извлекаемые запасы нефти изменяются в различных залежах от 15 до 80% в зависимости от физико-химических свойств нефти и свойств коллектора, а также от метода разработки. извлекаемые запасы газа составляют больший процент, но иногда существенно снижаются, главным образом в связи с дефектами системы разработки или большой неоднородностью коллектора. Система разработки помимо прочих физических и экономических условий определяется фильтрующей способностью коллектора и степенью активности пластовых вод того природного резервуара (пласта), в котором они заключены. Поэтому при разведке залежей производится измерение и соответствующих параметрических характеристик пласта.

Разведка нефтяных и газовых залежей требует изучения многих параметров самого полезного ископаемого и толщи, в которой оно заключено.

Задача поисков состоит в обнаружении промышленных скоплений нефти и газа. Для успешного и планомерного научно обоснованного решения этой задачи необходимо: а) знать факторы, определяющие размещение месторождений нефти и газа в земной коре, т. е. поисковые предпосылки; б) установить поисковые признаки месторождений нефти и газа; в) разработать комплекс эффективных поисковых методов и научиться его применять в соответствии с поисковыми признаками и природными условиями района поисков; г) по данным поисковых работ дать обоснованную оценку промышленных перспектив месторождений нефти и газа и своевременно отбраковать заведомо непромышленные проявления нефти и газа.

Задача разведки состоит в изучении месторождений с целью подготовки их к разработке путем проведения наиболее эффективных мероприятий, к числу которых относится правильно выбранная система разведки.

Для решения этих задач необходимо знать следующее: а) форму и размеры залежей, входящих в месторождение; б) условия залегания полезного ископаемого; в) гидрогеологические условия; г) особенности строения коллекторских толщ, содержащих нефть и газ; д) состав и свойства нефти, газа и воды; е) сведения о сопутствующих компонентах.

Бурение скважин является основным и наиболее трудоемким способом изучения строения недр, выявления и разведки залежей нефти и газа. В соответствии с действующей классификацией различаются следующие категории скважин.

Опорные скважины бурят для изучения геологического разреза крупных геоструктурных элементов и оценки перспектив их нефтегазоносности. Бурение опорных скважин производится с большим отбором керна и сопровождается опробованием тех коллекторских толщ, с которыми может быть связана нефтегазоносность. Как правило, опорные скважины закладываются в благоприятных структурных условиях, бурение их доводится до фундамента, а в областях его глубокого залегания - до технически возможных глубин.

Параметрические скважины бурят для изучения геологического строения и сравнительной оценки перспектив нефтегазоносности возможных зон нефтегазонакопления, а также для получения необходимых сведений о геолого-геофизической характеристике разреза отложений с целью уточнения результатов сейсмических и других геофизических исследований. Скважины этой категории закладывают в пределах локальных структур и тектонических зон по профилям. В них производится отбор керна (до 20% от глубины скважины и сплошной в пределах нефтегазоносных свит) и опробование пластов, выделенных как возможно продуктивные или с целью изучения гидрогеологических условий.

Структурные скважины бурят для выявления и подготовки к глубокому бурению перспективных площадей. Эти скважины доводят до маркирующих горизонтов, по которым строят надежные структурные карты.

Во многих районах структурное бурение проводится в комплексе с геофизическими работами для уточнения физических параметров и привязки геофизических данных к геологическим, т.е. для проверки или уточнения положения в разрезе опорных геофизических горизонтов и формы их залегания.

Поисковые скважины бурят на площадях, подготовленных к глубокому поисковому бурению с целью открытия новых месторождений нефти и газа. К поисковым относятся все скважины, заложенные на новой площади до получения первого промышленного притока нефти или газа, а также все первые скважины, заложенные на обособленных тектонических блоках или на новые горизонты в пределах месторождения. В поисковых скважинах производятся исследования с целью детального разреза отложений, его нефтегазоносности, а также структурных условий. При этом производится поинтервальный отбор керна по всему разрезу, не изученному бурением; сплошной отбор керна в интервалах нефтегазоносных горизонтов и на границах стратиграфических подразделений; отбор проб нефти, газа и воды при опробовании нефтегазоносных, а также водоносных горизонтов пластоиспытателем или через колонну.

Разведочные скважины бурят на площадях с установленной промышленной нефтегазоносностью с целью подготовки залежей к разработке. При бурении разведочных скважин производят следующие исследования: отбор керна в интервалах залегания продуктивных пластов, отбор поверхностных и глубинных проб нефти, газа и воды, опробование возможно продуктивных горизонтов, пробная эксплуатация продуктивных горизонтов. При определении конструкций поисковых и разведочных скважин предусматривается возможность передачи этих скважин в фонд эксплуатационных.

Разведка осуществляется по различным методикам. В содержание методики входит число скважин, порядок их размещения, последовательность разбуривания, порядок опробования вскрытых горизонтов. В практике разведки нефтяных и газовых месторождений скважины размещают по профилям (разведочным линиям) или по сетке.


По мере осуществления разведки производится обобщение материалов, как в графическом, так и в аналитическом виде, в результате чего создается графо-аналитическая модель залежи различной степени достоверности (строятся профили, карты в изолиниях и даются количественные характеристики различных показателей). Создание таких моделей принято называть геометризацией залежей (месторождений).



Рис. № 10 Схема корреляции разреза по сводным геолого-геофизическим данным.

В процессе разведки изучают различные показатели, характеризующие форму залежи, свойства коллектора и пр. В результате изучения залежи дается ее обобщенная характеристика в виде численных значений основных признаков и показателей, которые в этом случае называют параметрами. К основным параметрам залежи, необходимым для подсчета запасов и проектирования разработки, относятся численные значения площади, мощности, пористости, проницаемости. нефтенасыщенности, пластового давления и многие другие.

В результате разведки дается экономическая оценка месторождения, в которой отражены промышленное значение месторождения (его запасы, возможный уровень добычи) и горно-геологические условия разработки (глубины скважин, возможные системы разработки и пр.).

При разведке, также как и при разработке месторождений нефти и газа, необходимо проводить мероприятия, исключающие неоправданное нарушение природных условий: бесцельное уничтожение лесов, загрязнение почвы и водоемов сточными водами, буровым раствором и нефтью.

работ применяются геологические, геофизические, методы, а также бурение скважин и их исследование.

Геологические методы. Проведение геологической съёмки предшествует всем остальным видам поисковых работ . Для этого геологи выезжают в исследуемый район и осуществляют так называемые полевые работы. В ходе них они изучают пласты горных пород, выходящие на дневную поверхность, их состав и углы наклонов. Для анализа коренных пород, укрытых современными наносами, роются шурфы (вертикальная, реже наклонная, неглубокая горная выработка, обычно с площадью сечения прямоугольной формы, пройденная с поверхности) глубиной до 3 м. А с тем, чтобы получить представление о более глубоко залегающих породах, бурят картировочные скважины глубиной до 600 м.

По возвращении домой выполняются камеральные работы, т. е. обработка материалов, собранных в ходе предыдущего этапа. Итогом камеральных работ являются геологическая карта и геологические разрезы местности.

Геологическая карта – это проекция выходов горных пород на дневную поверхность. Антиклиналь (изгиб пласта, направленный выпуклостью вверх) на геологической карте имеет вид овального пятна, в центре которого располагаются более древние породы, а на периферии – более молодые.

Однако как бы тщательно не производилась геологическая съемка, она дает возможность судить о строении лишь верхней части горных пород. Чтобы "прощупать" глубокие недра используют геофизические методы. Геофизические методы. К геофизическим методам относятся сейсморазведка, электроразведка и магниторазведка.

Сейсмическая разведка (рис. 3.6) основана на использовании закономерностей распространения в земной коре искусственно создаваемых упругих волн.


Рис. 3.6.

Волны создаются одним из следующих способов:

  • взрывом специальных зарядов в скважинах глубиной до 30 м;
  • вибраторами;
  • преобразователями взрывной энергии в механическую.

Скорость распространения сейсмических волн в породах различной плотности неодинакова: чем плотнее порода, тем быстрее проникают сквозь нее волны. На границе раздела двух сред с различной плотностью упругие колебания частично отражаются, возвращаясь к поверхности земли, а частично преломившись, продолжают свое движение вглубь недр до новой поверхности раздела. Отраженные сейсмические волны улавливаются сейсмоприемниками. Расшифровывая затем полученные графики колебаний.

Электрическая разведка основана на различной электропроводности горных пород. Так, граниты, известняки, песчаники, насыщенные соленой минерализованной водой, хорошо проводят электрический ток, а глины, песчаники, насыщенные нефтью, обладают очень низкой электропроводностью.

Принципиальная схема электроразведки с поверхности земли приведена на рис. 3.7 . Через металлические стержни и сквозь грунт пропускается электрический ток, а с помощью стержней и и специальной аппаратуры исследуется искусственно созданное электрическое поле . На основании выполненных замеров определяют электрическое сопротивление горных пород. Высокое электросопротивление является косвенным признаком наличия нефти или газа.


Рис. 3.7.

Гравиразведка основана на зависимости силы тяжести на поверхности Земли от плотности горных пород. Породы, насыщенные нефтью или газом, имеют меньшую плотность, чем те же породы, содержащие воду. Задачей гравиразведки является определение мест с аномально низкой силой тяжести.

Магниторазведка основана на различной магнитной проницаемости горных пород. Наша планета – это огромный магнит, вокруг которого расположено магнитное поле . В зависимости от состава горных пород, наличия нефти и газа это магнитное поле искажается в различной степени. Часто магнитомеры устанавливают на самолеты, которые на определенной высоте совершают облеты исследуемой территории. Аэромагнитная съемка позволяет выявить антиклинали на глубине до 7 км, даже если их высота составляет не более 200 300 м.

Геологическими и геофизическими методами, главным образом, выявляют строение толщи осадочных пород и возможные ловушки для нефти и газа. Однако наличие ловушки ещё не означает присутствия нефтяной или газовой залежи. Выявить из общего числа обнаруженных структур те, которые наиболее перспективны на нефть и газ, без бурения скважин помогают гидрогеохимические методы исследования недр.

Гидрогеохимические методы. К гидрохимическим относят газовую, люминесцентно-битумонологическую, радиоактивную съёмки и гидрохимический метод.

Газовая съёмка заключается в определении присутствия углеводородных газов в пробах горных пород и грунтовых вод, отобранных с глубины от 2 до 50 метров. Вокруг любой нефтяной и газовой залежи образуется ореол рассеяния углеводородных газов за счет их фильтрации и диффузии по порам и трещинам пород. С помощью газоанализаторов, имеющих чувствительность 10 -5 10 -6 %, фиксируется повышенное содержание углеводородных газов в пробах, отобранных непосредственно над залежью. Недостаток метода заключается в том, что аномалия может быть смещена относительно залежи (за счет наклонного залегания покрывающих пластов) или же быть связана с непромышленными залежами.

Применение люминесцентно-битумонологической съемки основано на том, что над залежами нефти увеличено содержание битумов в породе, с одной стороны, и на явлении свечения битумов в ультрафиолетовом свете, с другой. По характеру свечения отобранные пробы пород делают вывод о наличии нефти в предполагаемой залежи.

Известно, что в любом месте нашей планеты имеется, так называемый, радиационный фон, обусловленный наличием в её недрах радиоактивных трансурановых элементов, а также воздействием космического излучения. Специалистам удалось установить, что над нефтяными и газовыми залежами радиационный фон понижен. Радиоактивная съемка выполняется с целью обнаружения указанных аномалий радиационного фона. Недостатком метода является то, что радиоактивные аномалии в приповерхностных слоях могут быть обусловлены рядом других естественных причин. Поэтому данный метод пока применяется ограниченно.

  • 5. Основы нефтегазопромысловой геологии
  • 5.1. Проблема поиска нефтяных и газовых месторождений
  • 5.2. Состав и возраст земной коры
  • 5.3. Формы залегания осадочных горных пород
  • 5.4. Состав нефти и газа
  • 5.5. Происхождение нефти
  • 5.6. Происхождение газа
  • 5.7. Образование месторождений нефти и газа
  • 5.8. Методы поиска и разведки нефтяных и газовых месторождений
  • 5.9. Этапы поисково-разведочных работ
  • 6. Бурение нефтяных и газовых скважин
  • 6.1. Краткая история развития бурения
  • 6.2. Понятие о скважине
  • 6.3. Классификация способов бурения
  • 6.4. Буровые установки, оборудование и инструмент
  • 6.5. Цикл строительства скважины
  • 6.6. Промывка скважин
  • 6.7. Осложнения, возникающие при бурении
  • 6.8. Наклонно направленные скважины
  • 6.9. Сверхглубокие скважины
  • 6.10. Бурение скважин на море
  • 7. Добыча нефти и газа
  • 7.1. Краткая история развития нефтегазодобычи
  • 7.2. Физика продуктивного пласта
  • 7.3. Этапы добычи нефти и газа
  • 7.4. Разработка нефтяных и газовых месторождений
  • 7.5. Эксплуатация нефтяных и газовых скважин. Способы эксплуатации скважин
  • Оборудование устья скважин
  • 7.6. Системы сбора нефти на промыслах
  • 7.7. Промысловая подготовка нефти
  • 7.8. Установка комплексной подготовки нефти
  • 7.9. Системы промыслового сбора природного газа
  • 7.10. Промысловая подготовка газа
  • 7.11. Система подготовки и закачки воды в продуктивные пласты
  • Сооружения для нагнетания воды в пласт
  • 7.12. Защита промысловых трубопроводов и оборудования от коррозии
  • Применение ингибиторов
  • 7.13. Стадии разработки залежей
  • 7.14. Проектирование разработки месторождений
  • 8. Переработка нефти
  • 8.1. Краткая история развития нефтепереработки
  • 8.2. Продукты переработки нефти
  • Нефтяные масла
  • Другие нефтепродукты
  • 8.3. Основные этапы нефтепереработки
  • 8.4. Типы нефтеперерабатывающих заводов
  • 9. Переработка газов
  • 9.1. Исходное сырье и продукты переработки газов
  • 9.2. Основные объекты газоперерабатывающих заводов
  • 9.3. Отбензинивание газов
  • Абсорбционный метод
  • Адсорбционный метод
  • 9.4. Газофракционирующие установки
  • 10. Химическая переработка углеводородного сырья
  • 10.1. Краткие сведения о нефтехимических производствах
  • 11. Способы транспортировки нефти, нефтепродуктов и газа
  • 11.1. Краткая история развития способов транспорта энергоносителей
  • 11.2. Современные способы транспортирования нефти, нефтепродуктов и газа
  • Водный транспорт
  • 11.3. Область применения различных видов транспорта
  • 12. Трубопроводный транспорт нефти
  • 12.1. Развитие нефтепроводного транспорта в России
  • 12.2. Свойства нефти, влияющие на технологию ее транспорта
  • 12.3. Классификация нефтепроводов
  • 12.4. Основные объекты и сооружения магистрального нефтепровода
  • 12.5. Трубы для магистральных нефтепроводов
  • 12.6. Трубопроводная арматура
  • 12.7. Средства защиты трубопроводов от коррозии
  • Протекторная защита
  • 12.8. Насосно-силовое оборудование
  • 12.9. Резервуары и резервуарные парки в системе магистральных нефтепроводов
  • 12.10. Системы перекачки
  • 12.11. Перекачка высоковязких и высокозастывающих нефтей
  • 13. Трубопроводный транспорт нефтепродуктов
  • 13.1. Развитие нефтепродуктопроводного транспорта в России
  • 13.2. Свойства нефтепродуктов, влияющие на технологию их транспорта
  • 13.3. Краткая характеристика нефтепродуктопроводов
  • 13.4. Особенности трубопроводного транспорта нефтепродуктов
  • 14. Хранение и распределение нефтепродуктов
  • 14.1. Краткая история развития нефтебаз
  • 14.2. Классификация нефтебаз
  • 14.3. Операции, проводимые на нефтебазах
  • 14.4. Объекты нефтебаз и их размещение
  • 14.5. Резервуары нефтебаз
  • 14.6. Насосы и насосные станции нефтебаз
  • 14.7. Сливо-наливные устройства для железнодорожных цистерн
  • 14.8. Нефтяные гавани, причалы и пирсы
  • 14.9. Установки налива автомобильных цистерн
  • 14.10. Подземное хранение нефтепродуктов
  • 14.11. Автозаправочные станции
  • 15. Трубопроводный транспорт газа
  • 15.1. Развитие трубопроводного транспорта газа
  • 15.2. Свойства газов, влияющие на технологию их транспорта
  • 15.3. Классификация магистральных газопроводов
  • 15.4. Основные объекты и сооружения магистрального газопровода
  • 15.5. Газоперекачивающие агрегаты
  • 15.6. Аппараты для охлаждения газа
  • 15.7. Особенности трубопроводного транспорта сжиженных газов
  • 16. Хранение и распределение газа
  • 16.1. Неравномерность газопотребления и методы ее компенсации
  • 16.2. Хранение газа в газгольдерах
  • 16.3. Подземные газохранилища
  • 16.4. Газораспределительные сети
  • 16.5. Газорегуляторные пункты
  • 16.6. Автомобильные газонаполнительные компрессорные станции
  • 16.7. Использование сжиженных углеводородных газов в системе газоснабжения
  • 16.8. Хранилища сжиженных углеводородных газов
  • 17. Трубопроводный транспорт твердых и сыпучих материалов
  • 17.1. Пневмотранспорт
  • 17.2. Контейнерный транспорт
  • 17.3. Гидротранспорт
  • 18. Проектирование трубопроводов и хранилищ
  • 18.1. Проектирование магистральных трубопроводов
  • 18.2. Особенности проектирования нефтебаз
  • 18.3. Использование эвм при проектировании трубопроводов и хранилищ
  • 19. Сооружение трубопроводов
  • 19.1. Основные этапы развития отраслевой строительной индустрии
  • Период до распада ссср
  • 19.2. Состав работ, выполняемых при строительстве линейной части трубопроводов
  • 19.3. Сооружение линейной части трубопроводов Погрузочно-разгрузочные и транспортные работы
  • 19.4. Особенности сооружения переходов магистральных трубопроводов через преграды
  • Воздушные переходы
  • 19.5. Строительство морских трубопроводов
  • 20. Сооружение насосных и компрессорных станций магистральных трубопроводов
  • 20.1. Состав работ, выполняемых при сооружении насосных и компрессорных станций
  • 20.2. Общестроительные работы на перекачивающих станциях Разбивочные работы
  • 20.3. Специальные строительные работы при сооружении нс и кс
  • Монтаж оборудования
  • Монтаж технологических трубопроводов
  • 20.4. Сооружение блочно-комплектных насосных и компрессорных станций
  • Основные понятия и определения
  • Предметно-алфавитный указатель
  • Список литературы
  • Приложение основы нефтегазового дела глазами студентов
  • 5.8. Методы поиска и разведки нефтяных и газовых месторождений

    Целью поисково-разведочных работ является выявление, оценка запасов и подготовка к разработке промышленных залежей нефти и газа.

    В ходе поисково-разведочных работ применяются геологические, геофизические, гидрогеохимические методы, а также бурение скважин и их исследование.

    Геологические методы

    Проведение геологической съемки предшествует всем остальным видам поисковых работ. Для этого геологи выезжают в исследуемый район и осуществляют так называемые полевые работы. В ходе них они изучают пласты горных пород, выходящие на дневную поверхность, их состав и углы наклона. Для анализа коренных пород, укрытых современными наносами, роются шурфы глубиной до 3 м. А с тем, чтобы получить представление о более глубоко залегающих породах бурят картировочные скважины глубиной до 600 м.

    По возвращении домой выполняются камеральные работы, т.е. обработка материалов, собранных в ходе предыдущего этапа. Итогом камеральных работ являются геологическая карта и геологические разрезы местности (рис. 5.4).

    Геологическая карта - это проекция выходов горных пород на дневную поверхность. Антиклиналь на геологической карте имеет вид овального пятна, в центре которого располагаются более древние породы, а на периферии - более молодые.

    Однако как бы тщательно ни производилась геологическая съемка, она дает возможность судить о строении лишь верхней части горных пород. Чтобы «прощупать» глубокие недра используют геофизические методы.

    Геофизические методы

    К геофизическим методам относятся сейсморазведка, электроразведка и магниторазведка.

    Сейсмическая разведка (рис. 5.5) основана на использовании закономерностей распространения в земной коре искусственно создаваемых упругих волн. Волны создаются одним из следующих способов: 1) взрывом специальных зарядов в скважинах глубиной до 30 м; 2) вибраторами; 3) преобразователями взрывной энергии в механическую. Скорость распространения сейсмических волн в породах различной плотности неодинакова: чем плотнее порода, тем быстрее проникают сквозь нее волны. На границе раздела двух сред с различной плотностью упругие колебания частично отражаются, возвращаясь к поверхности земли, а частично преломившись, продолжают свое движение вглубь недр до новой поверхности раздела. Отраженные сейсмические волны улавливаются сейсмоприемниками. Расшифровывая затем полученные графики колебаний земной поверхности, специалисты определяют глубину залегания пород, отразивших волны, и угол их наклона.

    Электрическая разведка основана на различной электропроводности горных пород. Так, граниты, известняки, песчаники, насыщенные соленой минерализованной водой, хорошо проводят электрический ток, а глины, песчаники, насыщенные нефтью, обладают очень низкой электропроводностью.

    Принципиальная схема электроразведки с поверхности земли приведена на рис. 5.6. Через металлические стержни А и В сквозь грунт пропускается электрический ток, а с помощью стержней М и N и специальной аппаратуры исследуется искусственно созданное электрическое поле. На основании выполненных замеров определяют электрическое сопротивление горных пород. Высокое электросопротивление является косвенным признаком наличия нефти или газа.

    Гравиразведка основана на зависимости силы тяжести на поверхности Земли от плотности горных пород. Породы, насыщенные нефтью или газом, имеют меньшую плотность, чем те же породы, содержащие воду. Задачей гравиразведки является определение мест с аномально низкой силой тяжести.

    Магниторазведка основана на различной магнитной проницаемости горных пород. Наша планета - это огромный магнит, вокруг которого расположено магнитное поле. В зависимости от состава горных пород, наличия нефти и газа это магнитное поле искажается в различной степени. Часто магнитомеры устанавливают на самолеты, которые на определенной высоте совершают облеты исследуемой территории. Аэромагнитная съемка позволяет выявить антиклинали на глубине до 7 км, даже если их высота составляет не более 200...300 м.

    Геологическими и геофизическими методами, главным образом, выявляют строение толщи осадочных пород и возможные ловушки для нефти и газа. Однако наличие ловушки еще не означает присутствия нефтяной или газовой залежи. Выявить из общего числа обнаруженных структур те, которые наиболее перспективны на нефть и газ, без бурения скважин помогают гидрогеохимические методы исследования недр.

    Гидрогеохимические методы

    К гидрохимическим относят газовую, люминесцентно-биту-монологическую, радиоактивную съемки и гидрохимический метод.

    Рис. 5.6 Принципиальная схема электроразведки

    Рис. 5.7 Схема многопластового нефтяного месторождения

    Газовая съемка заключается в определении присутствия углеводородных газов в пробах горных пород и грунтовых вод, отобранных с глубины от 2 до 50 м. Вокруг любой нефтяной и газовой залежи образуется ореол рассеяния углеводородных газов за счет их фильтрации и диффузии по порам и трещинам пород. С помощью газоанализаторов, имеющих чувствительность К)" 15 ...10" G %, фиксируется повышенное содержание углеводородных газов в пробах, отобранных непосредственно над залежью. Недостаток метода заключается в том, что аномалия может быть смещена относительно залежи (за счет наклонного залегания покрывающих пластов, например) или же быть связана с непромышленными залежами.

    Применение люминесцентно-битуминологической съемки основано на том, что над залежами нефти увеличено содержание битумов в породе, с одной стороны, и на явлении свечения битумов в ультрафиолетовом свете, с другой. По характеру свечения отобранной пробы породы делают вывод о наличии нефти в предполагаемой залежи.

    Известно, что в любом месте нашей планеты имеется так называемый радиационный фон, обусловленный наличием в ее недрах радиоактивных трансурановых элементов, а также воздействием космического излучения. Специалистам удалось установить, что над нефтяными и газовыми залежами радиационный фон понижен. Радиоактивная съемка выполняется с целью обнаружения указанных аномалий радиационного фона. Недостатком метода является то, что радиоактивные аномалии в приповерхностных слоях могут быть обусловлены рядом других естественных причин. Поэтому данный метод пока применяется ограниченно.

    Гидрохимический метод основан на изучении химического состава подземных вод и содержания в них растворенных газов, а также органических веществ, в частности, аренов. По мере приближения к залежи концентрация этих компонентов в водах возрастает, что позволяет сделать вывод о наличии в ловушках нефти или газа.

    Бурение и исследование скважин

    Бурение скважин применяют с целью оконтуривания залежей, а также определения глубины залегания и мощности нефтегазоносных пластов.

    Еще в процессе бурения отбирают керн-цилиндрические образцы пород, залегающих на различной глубине. Анализ керна позволяет определить его нефтегазоносность. Однако по всей длине скважины керн отбирается лишь в исключительных случаях. Поэтому после завершения бурения обязательной процедурой является исследование скважины геофизическими методами.

    Наиболее распространенный способ исследования скважин -электрокаротаж. В этом случае в скважину после извлечения бурильных труб опускается на тросе прибор, позволяющий определять электрические свойства пород, пройденных скважиной. Результаты измерений представляются в виде электрокаротажных диаграмм. Расшифровывая их, определяют глубины залегания проницаемых пластов с высоким электросопротивлением, что свидетельствует о наличии в них нефти.

    Практика электрокаротажа показала, что он надежно фиксирует нефтеносные пласты в песчано-глинистых породах, однако в карбонатных отложениях возможности электрокаротажа ограничены. Поэтому применяют и другие методы исследования скважин: измерение температуры по разрезу скважины (термометрический метод), измерение скорости звука в породах (акустический метод), измерение естественной радиоактивности пород (радиометрический метод) и др.

    В рациональном комплексе геологоразведочных работ на нефть и газ разведочный этап, как видно из таблицы рациональной последовательности этих работ, является естественным продолжением поискового. Разведочные работы имеют целью промышленную оценку открытых на поисковом этапе залежей и месторождений и подготовку их к разработке. При этом полученные в результате поискового бурения запасы углеводородов промышленной категории С1 и предварительно оцененные запасы категории С2 должны быть переведены в промышленные по всей площади открытого месторождения или залежи.

    Основными видами разведочных работ являются: бурение и испытание разведочных скважин, анализ всей необходимой геолого-геохимической информации для уточнения параметров залежи (месторождения) и подготовки его к пробной эксплуатации. При необходимости могут предусматриваться скважинная сейсморазведка методом ОГТ и в небольшом объеме полевые геофизические методы.

    Основным методологическим принципом разведки, сформулированным Г.А. Габриэлянцем и В.И. Пороскуном еще в 1974 году, является принцип равномерности бурения, который реализуется путем равномерного размещения разведочных скважин по объему залежи. Согласно этому принципу предусматривается детальное изучение прежде всего тех частей залежи (месторождений), которые содержат основные запасы углеводородов. При этом повышается точность оценки запасов, а следовательно, и качество подготовки месторождения к пробной эксплуатации и последующей разработке. Одновременно предусматривается дифференцированное размещение разведочного бурения, учитывающее морфогенетические особенности строения залежи или месторождения.

    Современная разведка нефтяных и газовых месторождений учитывает принципы оптимизации и универсальности процесса разведочного бурения, впервые предложенные В.М. Крейтером и В.И. Бирюковым (1976). Эти принципы формулируются следующим образом:

    1. Принцип рациональной системы и полноты исследований отдельной залежи или месторождения.
    2. Принцип последовательных приближений в изучении месторождения или отдельной залежи.
    3. Принцип относительной равномерности изучения объекта разведки.
    4. Принцип наименьших трудовых, научно-прикладных и материально-технических затрат.
    5. Принцип наименьших затрат времени и достижения наибольшей экономии при соблюдении энергосберегающих технологий.

    Рациональная система разведки нефтяных и газовых месторождений предполагает бурение некоторого, как правило минимального, количества разведочных скважин, закладываемых в определенной последовательности для получения информации, необходимой и достаточной для промышленной оценки открытого месторождения и подготовки его к разработке. При этом система размещения разведочных скважин должна соответствовать особенностям геологического строения изучаемого объекта.

    Разрез открытой залежи (месторождения) разбивается на этажи разведки. Под этажом разведки понимается часть разреза осадочного чехла, включающая один или несколько продуктивных пластов, расположенных на близких гипсометрических уровнях и характеризующихся сходством по геологическому строению вмещающих пород и физическим свойствам углеводородных флюидов. Их разведку можно проводить одной сеткой скважин.

    Выделяются три системы и соответствующие методики разведочного бурения: треугольная, кольцевая и профильная с системой параллельных поперечных и продольных профилей разведочных скважин.

    Треугольная система размещения разведочного бурения. Эта методика является наиболее старой и использовалась на заре развития нефтяной промышленности. При этом, как видно из рис. 65, первая поисковая скважина расположена в наиболее оптимальных структурно-гипсометрических условиях, остальные закладываются как разведочные в виде равносторонних треугольников со стороной, длина которой не должна превышать 500 метров при углах наклона крыльев локального поднятия до 10 градусов. При 20 градусах наклона она уменьшается до 400 метров, далее сокращаясь примерно на 50 метров с ростом угла наклона крыльев на каждые 5-6 градусов.

    Нерациональность принятой треугольной системы размещения разведочных скважин даже при принятых максимальных расстояниях между ними 500 метров состоит в бурении для соблюдения указанного принципа равномерности излишне большого их числа. Это приводит к существенному удорожанию буровых работ. Процесс в известной мере оправдан с достижением весьма скромной геологической эффективности (до 80-100 усл. тонн на 1 метр поисково-разведочного бурения) лишь при площади ловушки и прогнозируемой залежи не более 2-2,5 км2. Опыт разведки выявленных литологических и стратиграфических углеводородных скоплений размерами до 1-1,5 км2 также свидетельствует о рентабельности реализации треугольной системы разведочного бурения.

    В США широким распространением, наряду с крупными заливообразными литолого-стратиграфическими залежами, пользуются небольшие литологически ограниченные, или »шнурковые», или линзообразные, скопления нефти и газа с извлекаемыми запасами до 1,5 млн. усл. т размерами до 1,5-2 км2. Для разведки подобных месторождений также применяется треугольная сетка скважин с количеством их от 12 до 15, что находится в пределах рентабельности с получением средней эффективности до 120 усл. т/м. В России подобная система размещения разведочного бурения в качестве рациональной успешно использовалась в 1912 году на начальном этапе разведки открытой впервые в мировой практике И.М. Губкиным »рукавообразной» залежи нефти с переходом с 1916 года на профильное бурение. В настоящее время данная методика разведочных работ применяется при разведке небольших нефтяных залежей, связанных с эрозионными “врезами” довизийского и дотурнейского возраста в пределах Волго-Уральской и соседних с юга нефтегазоносных областей.

    Кольцевая система размещения разведочного бурения. Рациональный характер кольцевой системы разведки открытых залежей и месторождений, успешно сочетающейся с освоением отдельных разведываемых этажей, подтвержден на примере уникального Заполярного газоконденсатного месторождения общей площадью свыше 2000 км2 и величиной извлекаемых запасов газа 1,5 трлн. м3. Поиски в целом осуществлены по системе “крест поискового бурения” 12 поисковыми скважинами, а разведка – 27 разведочными скважинами, размещенными по кольцевой методике, показанной на рис. 66.

    Специфика кольцевой системы определяется на Заполярном месторождении следующим положением скважин на структурных межизогипсовых полях. В пределах первого поля первооткрывательницы от скважины 1 закладываются 4 буровых. После оконтуривания внутренней площади месторождения в следующем более внешнем поле по отношению к уже оконтуренной центральной зоне проектируются 5 буровых, помеченных квадратами. Завершив оконтуривание и этой части залежи, предусматривается освоение внешней зоны газоконденсатного месторождения с заложением сначала 7 разведочных скважин в предпоследнем поле, а затем 9 – в последнем межизогипсовом контуре, обрамляющем месторождение.

    Рациональный характер кольцевой системы разведочного бурения в освоении уникального Заполярного ГКМ подтверждается достигнутой величины геологической эффективности, превышающей здесь 1000 усл. т на 1 м поисково-разведочного бурения.

    Следовательно, высокая эффективность применения кольцевой системы достигается наличием крупных (до гигантских и более) запасов углеводородного сырья и относительно простым строением месторождения с залежью пластового или массивного строения сводового типа. На это следует, прежде всего, ориентироваться при выборе рациональной методики разведочных работ, что, как видно на примере уникального Заполярного месторождения, вполне оправдано полученными результатами. Кольцевая система была применена при разведке ряда крупных газоконденсатных месторождений Ейско-Березанской газоносной области, в частности Каневского и Ленинградского. В США на этой методике была разведана основная сводовая залежь в известняках свиты арбокл на крупнейшем нефтяном месторождении Оклахома-Сити Западной внутренней провинции.

    Профильная система размещения разведочных скважин

    В современ-
    ных условиях для разведки нефтегазовых залежей и месторождений антиклинального и неантиклинального типов любой сложности строения, кроме случаев, отмеченных выше в первых методиках, наиболее эффективной и повсеместно рациональной является профильная система разведочного бурения. Сущность ее состоит в проектировании определенного числа разведочных скважин, закладываемых каждой в точках пересечения поперечных и продольных профилей. Причем в зависимости от величины разведуемого месторождения строго регламентируются расстояние между поперечными и продольными профилями и площадь, приходящаяся на одну проектируемую бурением скважину. По сравнению с предыдущими методиками, профильная методика является наиболее “гибкой”, допуская текущие изменения рациональной сетки скважин и, тем самым, площади охвата разведуемой части месторождения.

    Рассмотрим типичные примеры размещения разведочных скважин по профильной системе. На рис. 67 дано расположение скважин на газоконденсатном месторождении. В разведку по профильной методике введен более крупный восточный блок, причем рациональная площадь на каждую скважину достигает 26 км2. Положение скважин на профиле показано на примере центральной части разведуемого блока. Общее количество скважин для восточного блока месторождения составляет 38. При тех же выбранных параметрах рациональное число разведочных скважин для меньшей по величине западной газоконденсатной залежи с той же отметкой ГВК составит 26. Однако, учитывая газоконденсатный тип углеводородного флюида и возможность полуторного увеличения расстояний между профилями и площади, приходящейся на одну скважину, общее число скважин в восточном блоке без нарушения принципа рациональности может составить 25, а для западной залежи – 18.

    На рис. 68 показана рациональная методика для антиклинального блока
    размерами 30х70 км, осложненного сбросами и включающего нефтяную залежь
    с отметкой ВНК минус 1590 м. Здесь наиболее рационально размещение разве-
    дочных скважин по системе параллельных взаимоперпендикулярных профилей
    с площадью каждого квадрата 18 км2.

    Положение профилей и скважин показано на примере центральной части западного купола антиклинали.

    На примере центральной части залежи дано рациональное размещение разведочных скважин для западного более крупного блока антиклинальной ловушки с прогнозируемой нефтяной залежью при отметке ВНК минус 3200 метров. В качестве наиболее рациональной принята методика, аналогичная отмеченной выше, с площадью отдельных квадратов сетки скважин 10 км2 и количеством скважин 12, начиная с поисковой скважины-первооткрывательницы месторождения. Для разведки показанных на рис. 69 и 70 соответственно прогнозируемых газоконденсатного и нефтяного месторождений рациональная система размещения скважин рассматривается для продуктивных блоков.

    От поисковой скважины 1, давшей промышленные притоки газоконденсата и нефти, предусматривается развитие рациональной сетки проектируемых буровых с сохранением “квадратичного” принципа размещения. Для разведуемого газоконденсатного месторождения площадь, приходящаяся на одну скважину, составляет с учетом газоконденсатного типа УВ флюида 12 км2 вместо 8 км2 для нефти, а рациональный комплекс разведки включает 24 скважины.

    Освоение разведкой других блоков месторождения не должно предусматривать увеличение числа буровых. В качестве рациональной для более крупной прогнозируемой нефтяной залежи (рис. 70) с отметкой ВНК минус 2400 м также предусматривается в центральной части структуры от поисковой скважины 1 по схеме, показанной на рисунках выше; в качестве более эффективной принята площадь 28 км2 на одну буровую, а общее количество разведочных скважин – 32. Далее по той же схеме выполняется разведка 16 скважинами меньшего, центрального структурного блока.

    На рис. 71 приведена газоконденсатная залежь сводового типа с отметкой ГВК минус 1050 м, осложненная в центральной части горстом, ограниченным поверхностями сместителей в виде двух лучей.

    Наиболее рациональным для разведки данного месторождения будет последовательное разбуривание по профильно-квадратной схеме сначала центральной части залежи при площади 8 км2 на одну скважину, начиная с горста. За пределами горста расстояние между скважинами может быть увеличено до 3 км, а площадь на одну буровую – до 10 км2. Рациональное число скважин для разведки месторождения не должно превышать 20. Для западного меньшего блока – 12 скважин.

    Для разведки нефтяной залежи сводового типа в антиклинальной ловушке, осложненной с юга сбросом (рис. 72), с отметкой ВНК минус 2810 метров площадью 18х6 км используется та же квадратная рациональная сетка скважин площадью 5 км2. Исходной для начала разведки является поисковая скважина 1. Минимальное количество скважин для полного охвата залежи с переводом ресурсов в категорию С1 составит 20.

    Разведка сводовых нефтяных залежей, изображенных на рис. 73 и 74, осуществляется по аналогичной профильной системе с площадью 4 км2 на одну разведочную скважину. Общая площадь месторождения, как и морфоструктурные условия в целом, тождественны залежам (рис. 70 и 71) с использованием также в качестве основы для размещения рациональной схемы буровых в центральной части залежи с поисковой скважиной 1.

    На рис. 75 изображена газоконденсатная залежь сложного строения сводового тектонически-экранированного типа с отметкой ГВК минус 775 метров. Рациональное размещение разведочного бурения предусматривает заложение разведочных скважин в центральном блоке от скважины 1 по сетке площадью 8 км2 (до ГВК) десяти скважин, что позволяет рассчитывать на наиболее эффективную разведку месторождения с показателем не менее 500 усл. т на метр разведочного бурения.

    Пример рациональной разведки нефтяной залежи приконтактного типа, приуроченной к диапировой брахиантиклинали показан на рис. 76.

    В пределах залежи проектируется рациональная сетка буровых по указанной профильной схеме с величиной площади, приходящейся на скважину, 6 км2. Проектом предусматривается, как видно из рисунка, бурение 30 разведочных скважин вплоть до ВНК на отметке минус 3300 м, начиная от поисковой скважины 1 – первооткрывательницы месторождения.

    Для рассмотренных выше залежей структурно-литологического и структурно-стратиграфического типов рациональной сохраняется та же профильная система размещения разведочных скважин с указанной квадратной сеткой. При этом площадь на одну скважину изменяется от 5 км2 для средних по размеру залежей до 18 км2 – у крупных.


    Буду благодарен, если Вы поделитесь этой статьей в социальных сетях: