Функциональные уравнения. Методы их решения

Дифференциальные уравнения, не разрешенные относительно производной.

F(x,y,y")=0

1. Из уравнения F(x,y,y")=0 выразить y" через x и y . Получится одно или несколько уравнений вида y"=f(x,y), каждое из которых надо решить.

Пример.

у" 2 -y 2 =0

y"=y и y"=-y

dy/y=dx и dy/y=-dx

ln|y|=x+lnC и ln|y|=-xlnD

y=Ce x и y=De -x

2. Метод параметра (простейший вариант метода).

Пусть уравнение F(x,y,y")=0 y .

y=f(x,y") .

Введем параметр p=y"=dy/dx

Тогда y=f(x,p)

Возьмем полный дифференциал от обеих частей, заменив dy через pdx , получим

pdx=f x "dx+f y "dy

Если решение этого уравнения найдено в виде x=φ(p) , то получим решение исходного уравнения в параметрической форме:

Пример

y=ln(1+y" 2)

p=y"=dy/dx, y=ln(1+p 2)

При делении на р потеряли решение у=0

3. Если уравнение F(x,y,y")=0 можно разрешить относительно х :

x=f(y,y") , то также как в 2 вводим параметр p=y"=dy/dx

4. Уравнение Лагранжа

y=xφy"+Ψ(y")

и уравнение Клеро

y=xy"+Ψ(y")

являются частными случаями, рассмотренными в пункте 2.

5) Немного об особых решениях. Решение y=φ(х) уравнения F(x,y,y")=0 называется особым, если через каждую его точку, кроме этого решения, проходит и другое ршение, имеющее в этой точке ту же касательную, что и решение φ(х) , но не совпадающее сним в сколь угодно малой окрестности этой точки. Пусть F(x,y,y"), δF/δy и δF/δy" непрерывны. Тогда любое особое решение уравнения F(x,y,y")=0 удовлетворяет и уравнению δ F(x,y,y")/δy"=0 .

Чтобы отыскать особые решения, надо из системы

исключить y ". Полученное уравнение называется дискриминантной кривой . Для каждой ветви дискриминантной кривой надо проверить, является ли эта ветвь решением и если является, то будет ли оно особым (т.е. нарушается ли единственность в каждой его точке).

Пример .

y=xy"-y 2 - Уравнение Клеро

p=y"=dy/dx, y=xp-p 2

pdx=pdx+xdp-2pdp

(x-2p)dp=0

dp=0, p=c , следовательно

x=2p, y=xp-p 2

y=Cx-C 2 или y=(x 2 /2)-(x 2 /4)

y=x 2 /4 -особое решение

y=x 2 /4 решение исходного уравнения. Докажем, что особое.

Берем произвольную точку на решении y=x 2 /4 , например (x o ,x 2 o /4 ). найдем С , при котором прямая y=Cx-C 2 также проходила через эту точку x 2 o /4=Cx o -C 2 , следовательно C=x o /2, т.е. y=(x o /2)x-(x 2 o /4) .

Методы решения уравнений: Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x) Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x) Разложение на множители. Введение новой переменной. Функционально – графический метод. Функционально – графический метод. Подбор корней. Применение формул Виета.






Разложение на множители. Уравнение f(x)g(x)h(x) = 0 можно заменить совокупностью уравнений f(x) = 0; g(x) = 0; h(x) = 0. Решив уравнения этой совокупности, нужно взять те их корни, которые принадлежат области определения исходного уравнения, а остальные отбросить как посторонние.


Решить уравнение x³ – 7x + 6 = 0 Представив слагаемое 7x в виде x + 6x, получим последовательно: x³ – x –6x + 6 = 0 x(x² – 1) – 6(x – 1) = 0 x(x – 1)(x + 1) – 6(x – 1) = 0 (x – 1)(x² + x – 6) = 0 Теперь задача сводится к решению совокупности уравнений x –1 = 0; x² + x – 6 = 0. Ответ: 1, 2, – 3.


Введение новой переменной. Если уравнение y(x) = 0 удалось преобразовать к виду p(g(x)) = 0, то нужно ввести новую переменную u = g(x), решить уравнение p(u) = 0, а затем решить совокупность уравнений g(x) = u 1 ; g(x) = u 2 ; … ; g(x) = u n, где u 1, u 2, …, u n – корни уравнения p(u) = 0.






Решите уравнение 6(x² – 4)² + 5(x² – 4)(x² – 7x +12) + (x² – 7x + 12)² = 0 Данное уравнение может быть решено как однородное. Поделим обе части уравнения на (x² – 7x +12)² (ясно, что значения x такие, что x² – 7x +12=0 решениями не являются). Теперь обозначим Имеем Отсюда Ответ:






Подбор корней Теорема1: Если целое число m является корнем многочлена с целыми коэффициентами, то свободный член многочлена делится на m. Теорема 2: Приведенный многочлен с целыми коэффициентами не имеет дробных корней. Теорема 3: Пусть – уравнение с целыми коэффициентами. где p и q – целые числа несократима, является корнем уравнения, то p есть делитель свободного члена a n, а q – делитель коэффициента при старшем члене a 0. Если число и дробь


Теорема Безу. Остаток при делении любого многочлена на двучлен (x – a) равен значению делимого многочлена при x = a. Следствия теоремы Безу Разность одинаковых степеней двух чисел делится без остатка на разность этих же чисел; Разность одинаковых четных степеней двух чисел делится без остатка как на разность этих чисел, так и на их сумму; Разность одинаковых нечетных степеней двух чисел не делится на сумму этих чисел; Сумма одинаковых степеней двух не чисел делится на разность этих чисел; Сумма одинаковых нечетных степеней двух чисел делится без остатка на сумму этих чисел; Сумма одинаковых четных степеней двух чисел не делится как на разность этих чисел, так и на их сумму; Многочлен делится нацело на двучлен (x – a) тогда и только тогда, когда число a является корнем данного многочлена; Число различных корней многочлена, отличного от нуля, не более чем его степень.


Решить уравнение x³ – 5x² – x + 21 = 0 Многочлен x³ – 5x² – x + 21 имеет целые коэффициенты. По теореме 1 его целые корни, если они есть, находятся среди делителей свободного члена: ± 1, ± 3, ± 7, ± 21. Проверкой убеждаемся в том, что число 3 является корнем. По следствию из теоремы Безу многочлен делится на (x – 3). Таким образом, x³– 5x² – x + 21 = (x – 3)(x²– 2x – 7). Ответ:


Решить уравнение 2x³ – 5x² – x + 1 = 0 По теореме 1 целыми корнями уравнения могут быть только числа ± 1. Проверка показывает, что данные числа не являются корнями. Так как уравнение не является приведенным, то оно может иметь дробные рациональные корни. Найдем их. Для этого умножим обе части уравнения на 4: 8x³ – 20x² – 4x + 4 = 0 Сделав подстановку 2x = t, получим t³ – 5t² – 2t + 4 = 0. По тереме 2 все рациональные корни данного приведенного уравнения должны быть целыми. Их можно найти среди делителей свободного члена: ± 1, ± 2, ± 4. В данном случае подходит t = – 1. Следовательно По следствию из теоремы Безу многочлен 2x³ – 5x² – x + 1 делится на (x + 0,5): 2x³ – 5x² – x + 1 = (x + 0,5)(2x² – 6x + 2) Решив квадратное уравнение 2x² – 6x + 2 = 0, находим остальные корни: Ответ:










Ответы и указания: 1. Введение новой переменной. 2. Функционально – графический метод. 3. Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x). 4. Разложение на множители. 5. Подбор корней. 6 Функционально – графический метод. 7. Применение формул Виета. 8. Подбор корней. 9. Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x). 10. Введение новой переменной. 11. Разложение на множители. 12. Введение новой переменной. 13. Подбор корней. 14. Применение формул Виета. 15. Функционально – графический метод. 16. Разложение на множители. 17. Введение новой переменной. 18. Разложение на множители.


1. Указание. Запишите уравнение в виде 4(x²+17x+60)(x+16x+60)=3x², Разделите обе его части на x². Введите переменную Ответ: x 1 = – 8; x 2 = – 7,5. 4. Указание. Прибавьте к левой части уравнения 6y и – 6y и запишите его в виде (y³ – 2y²) + (– 3y² + 6y) + (– 8y + 16) = (y – 2)(y² – 3y – 8). Ответ:


14. Указание. По теореме Виета Так как – целые числа, то корнями уравнения могут быть только числа –1, – 2, – 3. Ответ: 15. Ответ: – Указание. Разделите обе части уравнения на x² и запишите его в виде Введите переменную Ответ: 1; 1,5; 2; 3.


Библиография. Колмогоров А. Н. «Алгебра и начала анализа, 10 – 11» (М.: Просвещение, 2003). Башмаков М. И. «Алгебра и начала анализа, 10 – 11» (М.: Просвещение, 1993). Мордкович А. Г. «Алгебра и начала анализа, 10 – 11» (М.: Мнемозина, 2003). Алимов Ш. А., Колягин Ю. М. и др. «Алгебра и начала анализа, 10 – 11» (М.: Просвещение, 2000). Галицкий М. Л., Гольдман А. М., Звавич Л. И. «Сборник задач по алгебре, 8 – 9» (М.: Просвещение, 1997). Карп А. П. «Сборник задач по алгебре и началам анализа, 10 – 11» (М.: Просвещение, 1999). Шарыгин И. Ф. «Факультативный курс по математике, решение задач, 10» (М.: Просвещение. 1989). Скопец З. А. «Дополнительные главы по курсу математики, 10» (М.: Просвещение, 1974). Литинский Г. И. «Уроки математики» (М.: Аслан, 1994). Муравин Г. К. «Уравнения, неравенства и их системы» (Математика, приложение к газете «Первое сентября», 2, 3, 2003). Колягин Ю. М. «Многочлены и уравнения высших степеней» (Математика, приложение к газете «Первое сентября», 3, 2005).

Поэтому возникает естественное желание свести уравнение порядка выше первого к уравнению более низкого порядка. В некоторых случаях это удаётся сделать. Рассмотрим их.

1. Уравнения вида y (n) =f(x) решаются последовательным интегрированием n раз
, ,… .
Пример . Решить уравнение xy""=1 . Можем записать , следовательно, y"=ln|x| + C 1 и, интегрируя ещё раз, окончательно получаем y=∫ln|x| + C 1 x + C 2

2. В уравнениях вида F(x,y (k) ,y (k +1) ,..,y (n))=0 (то есть не содержащих в явном виде неизвестной функции и некоторых её производных) порядок понижается с помощью замены переменной y (k) = z(x). Тогда y (k +1) =z"(x),…,y (n) = z (n - k) (x) и мы получаем уравнение F(x,z,z",..,z (n - k)) порядка n-k. Его решением является функция z = φ(x,C 1 ,C 2 ,…,C n) или, вспоминая, что такое z, получаем уравнение y (n- k) = φ(x,C 1 ,C 2 ,…,C n - k) рассмотренного в случае 1 типа.
Пример 1 . Решить уравнение x 2 y"" = (y") 2 . Делаем замену y"=z(x) . Тогда y""=z"(x) . Подставляя в исходное уравнение, получаем x 2 z"=z 2 . Разделяя переменные, получаем . Интегрируя, имеем , или, что тоже самое, . Последнее соотношение записывается в виде , откуда . Интегрируя, окончательно получаем
Пример 2 . Решить уравнение x 3 y"" +x 2 y"=1 .Делаем замену переменных: y"=z; y""=z"
x 3 z"+x 2 z=1. Делаем замену переменных: z=u/x; z"=(u"x-u)/x 2
x 3 (u"x-u)/x 2 +x 2 u/x=1 или u"x 2 -xu+xu=1 или u"x^2=1. Откуда: u"=1/x 2 или du/dx=1/x 2 или u = int(dx/x 2) = -1/x+c 1
Поскольку z=u/x, то z = -1/x 2 +c 1 /x. Поскольку y"=z, то dy/dx=-1/x 2 +c 1 /x
y = int(c 1 dx/x-dx/x 2) =c 1 ln(x) + 1/x + c 2 . Ответ: y = c 1 ln(x) + 1/x + c 2

3. Следующим уравнением, допускающим понижение порядка, является уравнение вида F(y,y",y"",…,y (n))=0 , не содержащее в явном виде независимой переменной. Порядок уравнения понижается с помощью замены переменной y"=p(y) , где p - новая искомая функция, зависящая от y. Тогда
= и так далее. По индукции имеем y (n) =φ(p,p",..,p (n-1)). Подставляя в исходное уравнение, понижаем его порядок на единицу.

Пример . Решить уравнение (y") 2 +2yy""=0 . Делаем стандартную замену y"=p(y) , тогда y″=p′·p . Подставляя в уравнение, получаем Разделяя переменные, при p≠0, имеем Интегрируя, получаем или, что то же самое, . Тогда или . Интегрируя последнее равенство, окончательно получаем При разделении переменных мы могли потерять решение y=C, которое получается при p=0, или, что то же самое, при y"=0, но оно содержится в полученном выше.

4. Иногда удаётся подметить особенность, позволяющую понизить порядок уравнения отличными от рассмотренных выше способами. Покажем это на примерах.

Примеры .
1. Если обе части уравнения yy"""=y′y″ разделить на yy″, то получим уравнение , которое можно переписать в виде (lny″)′=(lny)′. Из последнего соотношения следует, что lny″=lny+lnC , или, что то же самое, y″=Cy . Получилось уравнение на порядок ниже и рассмотренного ранее типа.
2. Аналогично для уравнения yy″=y′(y′+1) имеем , или (ln(y"+1))" = (lny)" . Из последнего соотношения следует, что ln(y"+1) = lny + lnC 1 , или y"=C 1 y-1. Разделяя переменные и интегрируя, получаем, ln(C 1 y-1) = C 1 x+C 2
Решить уравнения, допускающие понижение порядка можно с помощью специального сервиса