Области применения кластеров. Нанокластеры благородных металлов Нанокластеры металлов

Кроме электроники одной из важнейших областей применения нанокластеров является медицина, прежде всего диагностика. Характерное свойство нанокристаллов полупроводников - интенсивная люминесценция в ответ на облучение с определенной частотой - оказалось незаменимым при диагностировании раковых опухолей. Поскольку при росте опухоли создаются дополнительные кровеносные сосуды и система этих сосудов очень пористая и разветвленная, нанокристаллики накапливаются в основном в них, и люминесцентное излучение пораженных участков существенно сильнее, чем здоровых. Такой процесс визуализации злокачественного образования называют пассивным. Другой путь - активный - использует нанокластеры, химически связанные с биологическими молекулами типа антител, пептидов, белков или ДНК. В этом случае нанокластеры активно накапливаются именно в опухоли, фиксируя ее местоположение.

Для создания таких нанокластеров обычно используются соединения атомов элементов II и VI групп таблицы Менделеева (условно такую молекулу определяют общей формулой AnBVI) или атомов элементов III и V групп (AinBv). Можно управлять формой квантовых точек, получать наностержни и более сложные фигуры.

Для анализа биологических объектов обычно используются органические флюоресцирующие вещества. Флюоресцентные полупроводниковые нанокристаллы по ряду свойств оказались лучше. У них большая яркость и узкое распределение по частотам излучения. Так, свечение кластеров селенида кадмия (CdS), защищенных моноатомным слоем селенида цинка ZnS, в 20 раз ярче, чем свечение органических красителей-люминофоров, а стабильность во времени выше в 100-300 раз. С их помощью можно длительное Время наблюдать процессы в биологической системе.

Важно, что частота излучения квантовой точки зависит от ее размеров. При этом возбуждать квантовые Точки можно одним и тем же источником света. Размерами кластеров можно управлять в процессе их получения с помощью температурного режима или времени роста.

Например, кластеры селенида кадмия размером от 8 до 6 нм излучают в диапазоне, начиная от видимого голубого до инфракрасного. При этом возбуждать квантовые точки можно одним и тем же источником света, в частности ртутной лампой.



Разработан метод лечения с использованием магнитного поля, действие которого вызывает достаточно сильный разогрев активных нанокластеров, и связанные с ними раковые клетки погибают без вреда для клеток здоровых.

Кроме медицины и электроники, нанокластеры получили широкое промышленное применение в произ­водстве принципиально новых материалов и покрытий, в парфюмерии.

Особый интерес представляет применение в парфюмерии и медицине наночастиц серебра и золота . Причиной этого является химическая инертность благородных металлов в массивных образцах и вместе с, тем особенности их участия в обмене веществ в живом организме.

В течение многих веков золото и серебро использовались для лечения и профилактики болезней. В Индии примерно три тысячи лет назад применяли золотосодержащие эссенции из масел и растительных экстрактов. В Древней Греции смесью золотого порошка и чес­нока лечили грипп. Ко дворам королей Польши и Пруссии поставляли «Солнечный эликсир», содержащий лекарственное золото. Серебряная посуда и приборы традиционно рассматривались как защита от кишечных заболеваний. В XX в. коллоидное золото использовали для лечения многих воспалительных процессов.

Нанокластеры из оксида цинка имеют уникальное свойство поглощать электромагнитное излучение в широкой области частот - от радиочастот до ультрафиолета. Их можно использовать в солнцезащитных кремах, очках и для создания «невидимых» покрытий.

Для нанотехнологии в целом характерно использование «достижений» живой природы, сформировавшихся за миллионы лет эволюции.

Лист лотоса, покрытый «микрокочками» (рис. 2.8), послужил образцом для создания самоочищающегося стекла: капли воды больше таких «нанопупырышков» и остаются лежать на них, не растекаясь по стеклу и не смачивая его. Внешне стекло остается прозрачным. Такое покрытие может быть также использовано в микроустройствах для уменьшения трения.

Форма некоторых нанокластеров удивительно напоминает цветы, деревья, шишки (рис. 2.9, 2.10), что подтверждает единство процессов самоорганизации в неживой и живой природе.

Для получения нанокластеров и материалов на их основе используются разнообразные физические, химические и физико-химические методы.

Лекция : Магнитные кластеры и нанослои

Природа магнетизма

Магнитные кластеры представляют особый интерес в связи с развитием наноэлектроники. Исследование магнитных кластеров, переходной ступеньки от атомов к макроскопическому телу, позволяет понять, как формируются его магнитные свойства из магнитных свойств отдельных атомов.

Магнитные явления в веществе имеют квантовую природу. Если бы в природе не было квантовых явлений, не существовало бы магнетизма во всех его проявлениях. Последствия этого трудно себе представить в полной мере.

У электронов есть особая квантовая характеристика - спин , определяющая его механический и магнитный момент и принимающая значения +1/2 и -1/2. Спины электронов в атоме складываются и определяют суммарный магнитный момент, который может оказаться как нулевым, так и отличным от нуля.

Суммарным магнитным моментом обладают также ядра атомов, образованные протонами и нейтронами.



Другой элементарный магнитный момент связано круговым движением электрона вокруг ядра. Он возникает аналогично магнитному моменту замкнутого контура по которому течет ток. На первый взгляд природу этого магнитного момента можно объяснить в рамках классической физики. Однако следует вспомнить, что само по себе устойчивое движение электронов вокруг ядра - эффект квантовый.

Рис. 3.1. Изменение ориентации атомных магнитных моментов парамагнетика под действием магнитного поля: а - магнитные моменты в отсутствие магнитного поля; б, в - система магнитных моментов в присутствии магнитного поля (в соответствует более высокой температуре)

В макроскопических телах магнитные свойства отдельных атомов проявляются сложным образом, они не просто складываются.

Внешнее магнитное поле с магнитной индукцией стремится упорядочить элементарные магнитики - магнитные поля атомов или электронов - в твердом теле, выстроить их по полю так, чтобы энергия системы была наименьшей. Если бы не было теплового движения, то все элементарные магнитики были бы ориентированы по полю (рис. 3.1, а ) и суммарный магнитный момент был бы максимально возможным и равным

где μ- элементарный магнитный момент одного магнитика, N - количество магнитиков, равное числу атомов.

Одинаково из-за беспорядочного (теплового) движения атомов магнитики имеют дополнительную кинетическую энергию, способствующую их перемешиванию. Таким образом, некоторые магнитики оказываются ориентированы против поля (рис. 3.1, б, в ). Они имеют большую потенциальную энергию, чем выстроившиеся по полю, подобно тому, как поднятый над землей камень имеет большую энергию, чем камень, лежащий на земле. Разность (N + - N_) числа магнитиков, ориентированных по и против поля, определяет степень намагниченности вещества. Суммарный магнитный момент равен

Поскольку N + >N_(всегда), то суммарный магнитный момент направлен по полю, и такое явление называют парамагнетизмом .

Очевидно, что чем выше температура тела, тем интенсивнее тепловое движение, разрушающее порядок построения магнитиков по полю, больше N_ и меньше результативная намагниченность (см. рис. 3.1, б, в ).

Магнитные моменты, связанные с движением электронов вокруг ядра, - орбитальные моменты - проявляют себя во внешнем поле иначе. Возникает эффект, аналогичный электромагнитной индукции при внесении кругового тока в магнитное поле. Индуцированный магнитный момент всегда направлен против поля, и твердое тело демонстрирует суммарную намагниченность с моментом, направленным против внешнего магнитного поля и не зависящим от температуры. Это явление называют диамагнетизмом .

Самым сложным образом ведут себя элементарные магнитные моменты в некоторых твердых телах, в которых возникает магнитная упорядоченность без внешнего магнитного поля. За счет особого внутреннего обменного взаимодействия, также описываемого только квантовой физикой, соседние магнитики могут ориентироваться в одну сторону, как в ферромагнетике (рис. 3.2, а ), или в противоположную, как в антиферромагнетике и ферримагнетике (рис. 3.2, б, в ). В двух последних случаях соседние противоположно направленные магнитные моменты компенсируют друг друга целиком или частично. Их взаимодействие заменяет внешнее магнитное поле, и процесс самоорганизации аналогичен самоорганизации атомов в кристалле. Только самоорганизация атомов в кристалле приводит к позиционной упорядоченности, а самоорганизация магнитных моментов - к ориентационной.


Упорядоченность магнитных моментов за счет внутреннего поля также разрушается тепловым движением. При некоторой температуре, которую называют температурой Кюри (Т к ), порядок полностью разрушается. При температурах выше Т к упорядоченность может возникать только за счет внешнего поля, твердое тело при этом является парамагнетиком.

В реальном макроскопическом кристалле из соображений минимальности общей энергии магнитная структура распадается на отдельные области, домены , в каждом из которых направление магнитиков одинаково. При помещении кристалла во внешнее магнитное моле границы доменов смещаются. На рисунке 3 цветной вклейки приведены фотографии магнитных доменов, полученных с помощью магнитного сканирующего микроскопа. Наличие доменной структуры осложняет проявление магнитных свойств, делает их менее прогнозируемыми.

УДК 541.138.2:546.59

СТРУКТУРА И СВОЙСТВА НАНОКЛАСТЕРОВ Men ІВ-МЕТАЛЛОВ С n = 2-8

© А.А. Дорошенко, И.В. Нечаев, А.В. Введенский

Ключевые слова: нанокластеры металлов; квантово-химическое моделирование; устойчивые изомеры. Квантово-химическим моделированием кластеров Me„ IB-металлов с n = 2-8 выявлены их наиболее устойчивые изомерные формы. Проведен анализ структуры и ряда свойств (геометрических, энергетических, электронных). Показано, что с увеличением размера кластера возрастает число изомерных форм, среди которых повышается доля ЭЭ-структур. Осуществлен расчет ИК-спектров нанокластеров IB-металлов при Т = 298 К, выявлено уши-рение диапазона колебательных частот преимущественно в область малых волновых чисел.

ВВЕДЕНИЕ

Нанокластеры Men металлов IB-подгруппы используются как высокоактивные каталитические материалы для электронных, оптических и медицинских устройств , в фотохимии и гелиотехнике . Особо перспективны малые кластеры с n < 10, все атомы которых являются поверхностными.

Экспериментально и теоретически установлено наличие осциллирующей зависимости ряда характеристик кластеров IB-металлов от их размера, что обычно связывается с эффектом размерного квантования. Наиболее ярко осцилляции свойств (работа выхода электрона, поверхностная энергия, энергия хемосорбции и др.) от размера проявляются у одномерных и двухмерных систем - атомных цепочек и тонких пленок . Однако некоторые характеристики, в частности парциальная плотность состояний поверхностных атомов, монотонно зависит от размера кластера .

Цель работы: выявление методом квантово-химического моделирования устойчивых изомерных форм нанокластеров меди, серебра и золота; определение их пространственного строения и свойств.

МЕТОДИКА РАСЧЕТОВ

Расчеты проведены методом DFT (программный пакет Gaussian 03) с использованием гибридного функционала PBE0 . Атомы металлов описывались псевдопотенциалом SDD .

Полная оптимизация геометрии структур осуществлена со следующими критериями сходимости: 4,5-10-4 Хартри-Бор-1 - для градиента (сил на атомах) и 1,810-3 Бор - для величин смещения атомов. Отсутствие мнимых значений в спектре колебательных частот свидетельствовало о соответствии полученных структур минимуму на поверхности потенциальной энергии. Для визуализации структуры кластеров использована программа ChemCraft .

Расчетная схема протестирована на двухатомных частицах (табл. 1). Ошибка в определении стандартной

энтальпии диссоциации AH°ss для Cu2 и Ag2 не превышает 7 %, а для Au2 составляет 14 %. Рассчитанное

Таблица 1

Рассчитанные и экспериментальные (выдел.) характеристики частиц Me2

Частица ahL , кДж/моль R, пм V, см-1 "Чэксп^расч

Cu2 184 193,9 ± 2,4 225 222 261 266,4 1,021

Ag2 148 159,2 ± 2,9 258 248 185 192,4 1,040

Au2 190 220,9 ± 1,9 255 247 173 190,9 1,103

межатомное расстояние Я в целом более точно согласуется с экспериментом, чем величина АН: отклонение не превышает 5 %. Характеристические частоты колебаний V при 298 К рассчитаны в рамках приближения гармонического осциллятора.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для получения всех возможных изомерных структур кластеров Меп каждого металла сгенерировано более 150 стартовых геометрий, оптимизация которых проведена с помощью алгоритма Берни .

За критерий относительной устойчивости изомеров Меп при Т = 0 К взята величина изменения энтальпии

АНо (Меп) в процессе их полной диссоциации на

Меп=п ■ Ме. (1)

Энтальпия диссоциации АН0, 0 , которую можно

трактовать как тепловой эффект процесса диссоциации при абсолютном нуле температуры, рассчитывалась по формуле:

АНО^о = п ■ Е(Ме) - Е(Ме„), (2)

Рис. 1. Наиболее устойчивые структуры кластеров Меп (Ме = Си, ^, Аи; п = 2-8)

Таблица 2

Число стабильных изомеров (/) кластеров Меп и свойства двух наиболее устойчивых форм (I и II)

Кластер п (/) лнО^о, кДж/моль АН0 ШГ1 ¿«5,298 5 кДж/моль ТАЧ" 0 1 ¿155,298 ’ кДж/моль ^^¿/55,298 5 кДж/моль -^НОМСЬ эВ ELUMO, эВ "^тт, см-1 "^тах, см-1

Сип 2 1 181-1 184-1 27-1 157-1 -5,89-1 -2,19-1 261-1 261-1

3 1 272-1 276-1 51-1 225-1 -4,21-1 -2,65-1 97-1 250-1

4 1 481-1 486-1 89-1 397-1 -4,98-1 -2,68-1 57-1 267-1

5 2 658-1 628-П 663-1 633-П 119-1 122-11 544-1 512-11 -4,80-1 -4,52-П -2,07-1 -3,04-11 39-1 75-11 259-1 265-11

6 4 892-1 880-П 898-1 887-П 155-1 157-11 743-1 730-11 -5,72-1 -5,44-П -2,16-1 -2,25-11 45-1 42-11 261-1 256-11

7 4 1116-1 1095-11 1124-1 1103-11 198-1 197-11 926-1 906-11 -4,58-1 -4,73-П -2,02-1 -2,02-11 73-1 60-11 241-1 241-11

8 6 1349-1 1341-11 1358-1 1350-11 236-1 236-11 1122-1 1114-11 -5,58-1 -5,30-П -1,99-1 -2,40-11 53-1 58-11 238-1 236-11

п ад < 2 1 146-1 148-1 26-1 122-1 -5,69-1 -2,40-1 185-1 185-1

3 1 216-1 219-1 48-1 171-1 -4,20-1 -2,74-1 50-1 172-1

4 2 388-1 367-П 391-1 370-П 88-1 78-11 303-1 293-11 -4,83-1 -4,86-П -2,83-1 -2,94-11 37-1 8-П 186-1 197-11

5 2 535-1 486-П 538-1 489-П 116-1 117-11 423-1 372-11 -4,69-1 -4,48-П -2,21-1 -3,09-11 27-1 50-11 183-1 180-11

6 5 738-1 716-П 742-1 720-П 152-1 153-11 591-1 567-11 -5,60-1 -5,34-П -2,28-1 -2,32-11 31-1 30-11 188-1 177-11

7 8 882-1 869-П 887-1 873-П 192-1 191-11 695-1 682-11 -4,47-1 -4,58-П -2,20-1 -2,12-11 47-1 39-11 164-1 163-11

8 12 1082-1 1073-11 1087-1 1077-11 229-1 230-11 858-1 848-11 -5,49-1 -5,50-П -2,03-1 -2,44-11 35-1 48-11 162-1 163-11

Аип 2 1 187-1 190-1 27-1 163-1 -7,09-1 -3,43-1 173-1 173-1

3 2 275-1 275-П 278-1 278-П 48-1 50-11 230-1 228-11 -6,39-1 -5,24-П -3,08-1 -3,76-11 18-1 57-11 160-1 161-11

4 2 489-1 483-П 492-1 486-П 90-1 84-11 402-1 402-11 -6,06-1 -6,24-П -3,79-1 -3,96-11 16-1 32-11 166-1 192-11

5 3 676-1 593-П 679-1 596-П 120-1 120-11 559-1 476-11 -5,83-1 -5,45-П -3,04-1 -4,00-11 23-1 35-11 175-1 162-11

6 4 945-1 866-П 948-1 869-П 159-1 157-11 789-1 712-11 -6,83-1 -6,40-П -3,07-1 -3,15-11 31-1 23-11 180-1 159-11

7 14 1067-1 1050-11 1070-1 1053-11 189-1 189-11 881-1 864-11 -5,72-1 -5,23-П -3,22-1 -3,23-11 13-1 13-11 185-1 179-11

8 25 1314-1 1288-11 1318-1 1291-11 224-1 234-11 1094-1 1057-П -6,67-1 -6,46-П -3,63-1 -2,98-11 4-1 25-11 199-1 144-11

где Е(Х) - полная энергия соответствующей частицы плюс энергия ее нулевых колебаний. Критерием устойчивости кластеров при Т = 298 К служило изменение

энергии Гиббса Д0^ 298 (Меи) в процессе (1), протекающем в идеальной газовой смеси при стандартных условиях.

На рис. 1 приведены оптимизированные структуры наиболее устойчивых при 0 К кластеров для каждого п; общее число полученных кластеров для меди, серебра и золота равняется, соответственно, 19, 31 и 51. В табл. 2 приведены некоторые характеристики для двух наиболее устойчивых изомерных форм - I и II.

Полученные наиболее устойчивые изомеры (структуры Меп I) согласуются с таковыми, экспериментально выявленными для меди (п = 2-8) , серебра (п = = 5-7) и золота (п = 2-8) . Самые стабильные изомеры кластеров меди и серебра во всем интервале п одинаковы. Для всех трех металлов устойчивые кластеры с п = 3-6 являются плоскими. Для кластеров меди и серебра с п = 7-8 наиболее стабильные структуры трехмерны, в отличие от золота, где во всем интервале размеров кластеров доминируют плоские структуры.

Особенности кластеров золота проявляются, начиная с п = 3. На поверхности потенциальной энергии для золота присутствуют два четких минимума, за малым (~0,1 кДж/моль) преимуществом второго при угле <Ли-Ли-Ли = 131,1°. Для серебра и меди второй минимум отсутствует.

Для кластеров Ме4 наиболее устойчивая структура (для меди она же единственная) при Т = 0 К обладает симметрией Такая структура энергетически отличается от второго изомера для серебра и золота на 21 и 6 кДж/моль соответственно. Однако при температуре 298 К для золота структура Ли4 I лишь немного, на

0,1 кДж/моль, более стабильна по сравнению со структурой Ли4 II. Как и в случае четырехатомных кластеров, самые стабильные структуры Ме5 (точечная группа С2„) совпадают для всех трех Ш-металлов. Второй по устойчивости изомер Ме5 II энергетически отличается от структуры Ме5 I на 30, 49 и 83 кДж/моль для Си, Ag и Ли, соответственно.

Для шестиатомных кластеров плоская структура с симметрией Б31, соответствует глобальному минимуму энергии для всех трех металлов. Второй по устойчивости изомер - пентагональная пирамида С5„ также является общим для Ш-металлов и энергетически отличает-

ся от ^¿-структуры на 12, 22 и 79 кДж/моль для меди, серебра и золота, соответственно. При п > 7 для кластеров Си и Ag трехмерные структуры являются более стабильными, чем плоские, которые доминируют в интервале размеров от трех до шести атомов. Наиболее устойчивые изомеры Ме7 и Ме8 для меди и серебра -это пентагональная бипирамида (точечная группа В5к) и структура с симметрией Тл (рис. 1). Семи- и восьмиатомные кластеры золота, отвечающие глобальному минимуму, все еще сохраняют плоскую форму. Согласно , плоские структуры доминируют для кластеров золота как минимум до п = 13; переход к трехмерным структурам, вероятно, происходит в интервале размеров от 13 до 20 атомов . Среди полученных структур только три плоских (одна для Лg8 и две для Ли8) имеют основное спиновое состояние - триплет, что на единицу выше минимально возможного.

На рис. 2 представлена зависимость энергии высшей заполненной молекулярной орбитали (а) и разницы энергий низшей свободной и высшей заполненной молекулярных орбиталей (б) от числа атомов для самых устойчивых изомеров. В обоих случаях зависимость носит немонотонный характер.

Термодинамические параметры (ДО°хх, ДН^) процесса полной диссоциации нанокластеров меняются в ряду: Ли > Си >> Ag - для п = 2-6 и Си > Ли >> Ag -для п = 7-8 (см. табл. 2). Вклад энтропийной составляющей (ТД^^ 298) свободной энергии Гиббса процесса (1) много меньше, чем изменение энтальпии; данный параметр примерно одинаков для всех исследуемых металлов и монотонно возрастает с размером кластера.

Чтобы проследить, как меняется устойчивость кластеров с увеличением их размера, исследована зависимость энергии химической связи в кластере, приходящейся на один атом, т. е. ДЯ^ 0 /п, от размера наиболее стабильного кластера. Из рис. 3а следует, что при увеличении п сила химической связи в кластере возрастает. Наименее стабильными структурами являются димер и тример, наиболее стабильными - октамеры. Расчетные и экспериментальные значения

ДЯ^ 0 /п для меди согласуются; кластеры серебра наименее устойчивы.

Рис. 2. Зависимость энергии высшей заполненной молекулярной орбитали (а) и разницы энергий низшей свободной и высшей заполненной молекулярных орбиталей (б) от числа атомов для самых стабильных кластеров

Рис. 3. Зависимость ДЯ^ 0 /п (а) и средней длины связи Ме-Ме (б) от числа атомов для самых устойчивых кластеров

Из сравнения значений АН^ 0 /п с энтальпией

испарения металлов (304,6, 255,1 и 324,4 кДж/моль для Си, Ag и Аи, соответственно ), которая рассматривается как энергия связи на атом в компактном металле, можно заключить, что в кластерах с п = 8 химическая связь достигает только половины своей силы относительно максимально возможной.

Средняя длина связи Ме-Ме (Яср) в наиболее устойчивых, при Т = 0 К, кластерах возрастает с увеличением числа атомов (рис. 3б). Наиболее резкий рост длины связи наблюдается в ряду Ме2-Ме3-Ме4, затем изменения Кср становятся малозаметны. Характерно, что если сравнивать кластеры разных металлов, то средняя длина связи Ме-Ме для них соотносится так же, как и межатомное расстояние в компактных металлах: Си < Ag = Аи.

1. Кластеры ІВ-металлов образуют несколько изомерных форм, количество которых растет как с увеличением числа атомов в кластере, так и в ряду: Аи > Ag > Си. Наиболее устойчивые структуры при п = 2 и п = 4-6 для всех исследуемых металлов одинаковы.

2. При увеличении размера нанокластеров ІВ-металлов их устойчивость возрастает. Наиболее слабая химическая связь характерна для кластеров серебра.

3. Значения £нОМО и £шмо немонотонно зависят от числа атомов в кластере Меп, что является проявлением эффекта размерного квантования. Однако ряд характеристик, прежде всего термодинамических, с возрастанием п меняется практически монотонно, как и среднее межатомное расстояние в кластерах; последнее стремится к значению, характерному для компактного металла.

4. Диапазон значений колебательных частот, полученных для кластеров меди, серебра и золота относительно характеристической частоты соответствую-

щего димера, расширен преимущественно в область меньших волновых чисел.

ЛИТЕРАТУРА

1. Koretsky G.M., Knickelbein M.B. The reactions of silver clusters with ethylene and ethylene oxide: Infrared and photoionization studies of Agn(C2H4)m, Agn(C2H4Ü)m and their deuterated analogs // J. Chem. Phys. 1997. V. 107. № 24. P. 10555-10567.

2. Elghanian R., Storhoff J.J., Mucic R.C., Letsinger R.L., Mirkin C.A. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles // Science. 1997. V. 277. № 5329. P. 1078-1081.

3. Eachus R.S., Marchetti A.P., Muenter A.A. The photophysics of silver halide imaging materials // Ann. Rev. Phys. Chem. 1999. V. 50. P. 117144.

4. Kim S.-H., Medeiros-Ribeiro G., Ohlberg D.A.A., Williams R.S., Heath J.R. Individual and Collective Electronic Properties of Ag Nanocrystals // J. Phys. Chem. 1999. V. 103. № 47. P. 10341-10347.

5. Morse M.D. Clusters of Transition-Metal Atoms // Chem. Rev. 1986. V. 86. № 6. P. 1049-1109.

6. Alameddin G., Hunter J., Cameron D., Kappes M.M. Electronic and geometric structure in silver clusters // Chem. Phys. Lett. 1992. V. 192. № 1. P. 122-128.

7. Krämer H.-G., Beutel V., Weyers K., Demtröder W. Sub-Doppler laser spectroscopy of silver dimers Ag2 in a supersonic beam // Chem. Phys. Lett. 1992. V. 193. № 5. P. 331-334.

8. Taylor KJ., Pettiette-Hall C.L., Cheshnovsky O., Smalley R.E. Ultraviolet photoelectron spectra of coinage metal clusters // J. Chem. Phys. 1992. V. 96. №. 4. P. 3319-3329.

9. Bonacic-Koutecky V., Fantucci P., Koutecky J. Quantum Chemistry of Small Clusters of Elements of Groups Ia, Ib, and Ila: Fundamental Concepts, Predictions, and Interpretation of Experiments // Chem. Rev. 1991. V. 91. № 5. P. 1035-1108.

10. Bravo-Pérez G., Garzón IL., Novaro O. Ab initio study of small gold clusters // J. Mol. Struct. 1999. V. 493. P. 225-231.

11. El-Bayyari Z., Oymak H., Kökten H. Ün the structural and energetic features of small metal clusters: Ni„, Cu„, Pd„, Pt„, and Pb„; n = 3-13 // Int. J. Mod. Phys. C. 2004. V. 15. № 6. P. 917-930.

12. Prestianni A., Martorana A., Labat F., Ciofini I., Adamo C. A DFT investigation of CÜ oxidation over neutral and cationic gold clusters // J. Mol. Struct. 2009. V. 903. P. 34-40.

13. Hong L., Wang H., Cheng J., HuangX., Sai L., Zhao J. Atomic Structures and Electronic Properties of Small Au-Ag Binary Clusters // Comput. Theor. Chem. 2012. V. 993. P. 36-44.

14. Baetzold R.C. Calculated Properties of Metal Aggregates. I. Diatomic Molecules // J. Chem. Phys. 1971. V. 55. № 9. P. 4355-4363.

15. Baetzold R.C., Mack R.E. Electronic properties of metal clusters // J. Chem. Phys. 1975. V. 62. № 4. P. 1513-1520.

16. Köster A.M., Calaminici P., Jug K., Zimmermann B. Structure and stability of small copper clusters // J. Chem. Phys. 2002. V. 116. № 11. P. 4497-4507.

17. Мейланов Р.П., Абрамова Б.А., Мусаев Г.М., Гаджиалиев М.М. Хемосорбция на размерно-квантовой нити // ФТТ. 2004. Т. 46. С. 1076-1077.

18. Мейланов Р.П. Взаимодействие адатомов в системе адсорбат -размерно-квантовая пленка - адсорбат // ФТТ. 1990. Т. 32. С. 28392841.

19. Schulte F.K. A theory of thin metal films: electron density, potentials and work function // Surf. Sci. 1976. V. 55. P. 427-444.

20. Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model // J. Chem. Phys. 1999. V. 110. P. 6158-6169.

21. Stoll H., Fuentealba P., Schwerdtfeger P., Flad J., Szentpaly L. v., Preuss H. Cu and Ag as one-valence-electron atoms - Cl results and quadrupole corrections of Cu2, Ag2, CuH, and AgH // J. Chem. Phys. 1984. V. 81. P. 2732-2736.

22. www. chemcraftprog. org

23. Peng C., Ayala P. Y., Schlegel H.B., Frisch M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states // J. Comp. Chem. 1996. V. 17. № 1. P. 49-56.

24. Deka A., Deka R.C. Structural and electronic properties of stable Au* (n = 2-13) clusters: A density functional // J. Mol. Struct. 2008. V. 870. P. 83-93.

25. Wanga J., Wanga G., Zhao J. Structures and electronic properties of Cu20, Ag20 and Au20 clusters with density functional method // Chem. Phys. Lett. 2003. V. 380. № 5-6. P. 716-720.

26. Spasov V.A., Lee T.-H., Ervin KM. Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls // J.

Chem. Phys. 2000. V. 112. P. 1713-1721.

27. ЭмслиДж. Элементы. М.: Мир, 1993. 256 с.

БЛАГОДАРНОСТИ: Исследование поддержано

грантом Воронежского госуниверситета по Программе стратегического развития, тема ПСР-МГ/24-12.

Doroshenko A.A., Nechayev I.V., Vvedenskiy A.V. STRUCTURE AND PROPERTIES OF Men IB-METALS NANOCLUSTERS WITH n = 2-8

Quantum-chemical modeling of Men IB-metals clusters with n = 2-8 was used to reveal the most stable isomeric forms. The analysis of the structure and some properties (geometric, energetic and electronic) was carried out. It was shown that the growth of cluster size results in the growth of number of isomeric forms and the share of 3D-structures among them. Ther IR-spectra of IB-metal clusters at Т = 298 К were calculated and revealed the broadening of vibration frequencies band principally into the range of small wave numbers.

Key words: metal nanoclusters; quantum-chemical modeling; stable isomers.

УДК 541.138.3

ПРИМЕНЕНИЕ ПОЛИАНИЛИНА И ЕГО МЕТАЛЛОКОМПОЗИТОВ В ЭЛЕКТРОКАТАЛИТИЧЕСКОМ ГИДРИРОВАНИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

© Н.М. Иванова, Г.К. Тусупбекова, Я.А. Висурханова, Д.С. Избастенова

Ключевые слова: электрокаталитическое гидрирование; полианилин-металлические композиты; ацетофенон; диметилэтинилкарбинол.

Приведены результаты исследований возможной каталитической активности композитов полианилин/соль металла при нанесении их на поверхность медного катода в процессах электрогидрирования ацетофенона и диме-тилэтинилкарбинола. Заметный промотирующий эффект (по сравнению с электрохимическим восстановлением) установлен для композитов полианилина с МС12 (1:1), СиС1 (1:2) и СиС12 (1:2) при гидрировании диметилэти-нилкарбинола. Электрогидрирование ацетофенона осуществляется более интенсивно и с высокой конверсией при применении Со-содержащего композита (1:1). Каталитическую активность в исследуемых процессах проявил также гидрохлорид полианилина.

ВВЕДЕНИЕ

В последние двадцать лет проводятся интенсивные исследования по применению полимер-металлических композитов в качестве катализаторов в каталитических и электрокаталитических системах. Особое внимание уделяется нанокомпозитам на основе полианилина благодаря его легкому синтезу, высокой электропроводности, стабильности к окружающим условиям и другим привлекательным физико-химическим свойствам . В электрохимических процессах с помощью нанесения полианалина на электрод с дальнейшей иммобилизацией в него частиц металла осуществляется модификация электрода, позволяющая интенсифицировать электродные реакции. С применением полиани-лин-металлических электродных покрытий были изучены электрокаталитические реакции окисления метанола , муравьиной кислоты , гидрохинона

Гидразина и некоторых других органических соединений. Реакциям электровосстановления на электродах, модифицированных полианилин-металличе-скими покрытиями, посвящено сравнительно меньшее количество исследований, исключение составляет электровосстановление кислорода . Подробное обсуждение этих и других электрокаталитических процессов на модифицированных полимерами (и в частности, полианилином) электродах приведено в обзоре .

Эффективность процессов электрокаталитического гидрирования органических соединений с различными функциональными группами с применением для активации катода скелетных металлов-катализаторов (Ее, Со, N1, Си, 7п), а также электролитического порошка меди была подтверждена многолетними исследованиями . Целью данной работы явилось изучение возможности проявления каталитической активности

2.1.1. Классическая теория зародышеобразования

В химии термин «кластер» употребляют для обозначения группы близко расположенных и тесно связанных друг с другом атомов, молекул, ионов, а иногда и ультрадисперсных частиц. Впервые это понятие было введено в 1964 г., когда профессор Ф. Коттон предложил называть кластерами химические соединения, в которых атомы металла образуют между собой химическую связь. Как правило, в таких соединениях атомы металлов (М) связаны с лигандами (L). оказывающими стабилизирующее действие и окружающими металлическое ядро кластера наподобие оболочки. Такие кластеры обычно называют молекулярными кластерами металлов, причем ядро может насчитывать от единиц до нескольких тысяч атомов. Кластерные соединения металлов с общей формулой M m L n классифицируют на малые (т/п 1), средние (т/п ~ 1), большие (т/п > 1) и гигантские (т » п) кластеры. Малые кластеры содержат обычно до 12 атомов металла, средние и большие - до 150, а гигантские (их диаметр достигает 2... 10 нм) - свыше 150 атомов. Примером таких систем могут служить кластеры палладия (Рф^, | phen(,o(0Ac) i go, где phen = = С 6 Н 5 ; ОАс = СН 3 СОО) или кластерные анионы молибдена ({Mo ^ Mo ^ 04^2II1 д(НдО)7о) 14). К кластерам относят также наноструктуры упорядоченного строения, имеющие заданную упаковку атомов и правильную геометрическую форму.

В последнее десятилетие XX в., с развитием нанотехнологии и усовершенствованием методов синтеза наноматериалов, ученые стали использовать термин «нанокластер», который по сути является синонимом термина «кластер» и объединяет в одну группу молекулярные кластеры, газовые безлигандные кластеры, коллоидные кластеры, твердотельные нанокластеры и матричные кластеры.

Кластеры, не требующие стабилизации лигандами (безлигандные, или свободные, кластеры), как правило, стабильны только в вакууме, но иногда встречаются и в свободном виде, например в природе обнаружены метастабильные кластеры золота. В обычных условиях безлигандные кластеры диаметром менее 3 нм неустойчивы. Для повышения стабильности их поверхность покрывают полимерами или вводят в инертную матрицу (так называемая матричная изоляция). К числу безлигандных кластеров относят и фуллерены.

Коллоидные кластеры образуются в результате химических реакций в растворах, и по отношению к жидкой фазе их можно разделить на лиофильные (гидрофильные) и лиофоб- ные (гидрофобные). Лиофильные кластеры, в отличие от лио- фобных, сорбируют на своей поверхности молекулы растворителя, образуя с ними прочные сольватные комплексы. Типичными представителями гидрофильных кластеров являются оксиды кремния, железа и других металлов в водной среде.

Твердотельные нанокластеры образуются в результате различных превращений в твердой фазе. Множество твердофазных взаимодействий сопровождается образованием зародышей продукта реакции, размеры которых увеличиваются при последующей термической обработке.

Матричные нанокластеры представляют собой изолированные друг от друга кластеры, заключенные в твердофазную матрицу, предотвращающую процессы агрегации.

Известна еще одна форма уникальных кластеров, называемых сверхкластерами. Это кластеры, которые содержат в узлах решетки не отдельные атомы, а более мелкие кластеры или наночастицы. При этом, как и в случае гигантских кластеров, наиболее устойчивым конфигурациям отвечают сверхкластеры, имеющие форму правильного икосаэдра с завершенным числом слоев, т.е. агрегаты, в которых число наночастиц соответствует «магическим» числам.

Использование свободных нанокластеров в качестве функциональных материалов практически невозможно ввиду их крайне низкой стабильности и значительной склонности к агрегации. В то же время кластеры, растворенные в жидкой фазе (коллоидные кластеры), и кластеры, заключенные в твердофазную матрицу (твердотельные или матричные нанокластеры), являются типичными примерами функциональных нанокомпозитов, известных человечеству уже тысячи лет (например, окрашенные нанокластерами металлов стекла научились получать еще в Древнем Египте). Внедрение нанокластеров в матрицу позволяет стабилизировать нанофазу, избежать агрегации и защитить матрицу от внешних воздействий. Свойства и методы получения таких нанокластеров будут подробно рассмотрены в следующих главах.

В настоящей главе основное внимание уделено методам получения и свойствам свободных нанокластеров, являющихся самыми простыми «модельными» представителями нано- мира, на примере которых проще всего исследовать фундаментальные свойства наночастиц.

Представление о механизмах формирования кластеров можно получить, изучая процессы зародышеобразования. В 40-х гг. XX в. появилась теория, разработанная М. Фольме- ром, Р. Беккером и В. Дерингом, а впоследствии переработанная Я.И. Френкелем и Я.Б. Зельдовичем. Она основана на предположении, что зарождающиеся кластеры новой фазы ведут себя как сферические жидкие капли, находящиеся в атмосфере пересыщенного пара (капиллярное приближение). Свободная энергия этих кластеров складывается из положительной свободной поверхностной энергии и отрицательной свободной объемной энергии, определяемой разностью энергии пересыщенного пара и жидкости. Свободная поверхностная энергия является результатом формирования поверхности раздела фаз между каплей жидкости и газом. Для кластера, состоящего из п атомов или молекул, поверхностная энергия может быть выражена уравнением

где а - поверхностное натяжение, или поверхностная энергия на единицу площади; Л(п) - площадь поверхности кластера; v - объем одной молекулы или атома. При переходе п молекул из газовой фазы в кластер вклад объемной энергии Е/, в свободную энергию формирования кластера составляет н(р[ - Pj,), где Ц| и - химические потенциалы жидкости и газа соответственно. В предположении идеального газа

где к в - константа Больцмана; Т - температура, S - пересыщение, выраженное соотношением

где Р - давление пара; Р е - давление насыщенного пара при данной температуре. Таким образом, свободная энергия формирования кластера, состоящего из п атомов или молекул:

Это выражение позволяет определить вклады объемной и поверхностной энергии при формировании кластеров и оценить их концентрацию и стабильность в пересыщенном паре. Очевидно, что положительная энергия поверхности раздела фаз препятствует начальному зародышеобразованию, т.е. существует энергетический барьер, который должна преодолеть система для инициирования процесса образования кластеров. Минимальный размер кластера (содержащего п* молекул или атомов) в равновесных условиях можно легко подсчитать из условия dE/dn = 0:

Размер г* носит название критического размера кластера или зародыша, причем кластеры с меньшим размером термодинамически неустойчивы. Подставляя величину п* в уравнение (2.4), можно определить высоту энергетического барьера, который следует преодолеть системе для начала процесса зародышеобразован ия:

Увеличение степени пересыщения ведет к уменьшению критического размера кластера и понижению энергетического барьера. Это увеличивает вероятность того, что флуктуации в системе позволят некоторым кластерам вырасти настолько, чтобы преодолеть барьер и перейти в стабильное состояние.

На рис. 2.1 приведены расчетные кривые зависимости свободной энергии от размера частиц для различных металлических кластеров = 0,5 мм рт. ст., Р е = 0,01 мм рт. ст.; для металлов Cs, К, Al, Ag, Fe и Hg температура, при которой достигается равновесное давление Р е = 0,01 мм рт. ст., составляет 424, 464, 1472, 1262, 1678 и 328 К соответственно).

Необходимо отметить, что степень пересыщения S можно повысить, увеличивая давление пара Р или понижая равновесное давление Р е. Первое можно сделать путем повышения числа атомов в паре или понижения числа атомов, покидающих зону зародышеобразования. Равновесное давление можно уменьшить, понижая температуру системы:


Рис. 2.1.

где Р 0 - константа; 7(0) - удельная скрытая теплота при О К; R - универсальная газовая постоянная.

Скорость гомогенного зародышеобразования 7, определяемая как число образовавшихся кластеров в единице объема в единицу времени, может быть выражена уравнением

Фактор К включает как коэффициент эффективности столкновений молекул пара с кластерами размера п , так и величину отклонения распределения кластеров по размерам от равновесного. Критическое пересыщение S c может быть определено как пересыщение, при котором скорость гомогенного зародышеобразования7 равна единице. Используя значения поверхностного натяжения, плотности и равновесного давления объемного вещества при 7=1, можно оценить величину критического пересыщения S c . На рис. 2.2 приведены температурные зависимости критического пересыщения для некоторых металлов. Таким образом, при низких температурах значения критического пересыщения достаточно высоки, а критический размер зародыша, напротив, мал. Аналогичный вывод можно сделать на основе уравнения 2.9, из которого

Рис. 2.2. Зависимость критического перенасыщения S c от температуры для паров калия (а) и алюминия (б)

видно, что высокие значения S c легче достигаются при низких температурах.

Анализируя сделанные допущения, можно заключить, что представленная теория неприменима в области высоких пересыщений. В последнем случае изменение состояния газа в точке зародышеобразования происходит намного быстрее, чем необходимо для установления локального метастабилыю- го равновесия. Кроме того, при очень высоких пересыщениях кластеры могут включать менее десятка атомов, в связи с чем использование величин поверхностного натяжения и плотности, характерных для объемных веществ, в отношении таких зародышей представляется неразумным.

Другая проблема состоит в использовании капиллярного приближения к кристаллическим кластерам (т.е. кристаллический кластер рассматривается в предположении жидкой капли), хотя на практике величины поверхностного натяжения при соответствующих температурах, как правило, неизвестны.

Несмотря на кажущуюся простоту и описанные выше недостатки, классическая теория зародышеобразования, разработанная более полувека назад, с успехом используется и сейчас для описания процессов формирования нанокластеров из газовой атмосферы. С некоторыми допущениями она может быть использована и используется для описания процессов кристаллизации из растворов.


Владельцы патента RU 2382069:

Изобретение относится к области разработки металлоплакирующих присадок к смазочным композициям, содержащим твердофазные ультрадисперсные добавки металлов, и предназначено для получения нанокластеров меди, свинца, цинка, никеля с размерами частиц 15-50 нм. Способ включает электрохимическое восстановление металла, выбранного из группы Cu, Pb, Zn, Ni, в водно-органическом растворе электролита с растворимым анодом из восстанавливаемого металла с одновременным диспергированием восстановленного металлического слоя на катоде. Электрохимическое восстановление и диспергирование восстановленного металлического слоя осуществляют в водном растворе трех-шестиатомных спиртов, при этом диспергирование ведут путем трения пары «стальной катод-сталь» под воздействием регулируемой нагрузки не менее 7,5 МПа. В устройстве для осуществления способа катод выполнен в форме стального диска, над поверхностью стального диска с возможностью вертикального перемещения установлена державка, на нижней поверхности которой равномерно по окружности выполнены три паза с закрепленными в них стальными пальцами, рабочие торцы которых контактируют с поверхностью стального диска с образованием зоны трения. Технический результат - получение стабилизированных нанокластеров металлов Cu, Pb, Zn, Ni, устойчивых к действию кислорода и влаги, повышение триботехнических характеристик получаемых водно-спиртовых смазочных композиций, обеспечение возможности контроля триботехнических характеристик водно-спиртовых смазочных композиций. 2 н. и 4 з.п. ф-лы, 8 ил.

Изобретение относится к области разработки металлоплакирующих присадок к водно-растворимым и другим противоизносным смазочным композициям, содержащим твердофазные ультрадисперсные добавки металлов, и может быть использовано для получения нанокластеров меди, свинца, цинка, никеля, с размерами частиц 15-50 нм.

В настоящее время развивается направление, связанное с созданием новых присадочных материалов к маслам и смазкам, которые формируют поверхностные пленки в зоне контактного взаимодействия, обеспечивающие повышение износостойкости пар трения и представляют собой металлосодержащие смазочные композиции на основе твердофазных кластерных добавок. Основными компонентами данного типа присадок являются наноразмерные порошки мягких металлов или их сплавов. Такие добавки улучшают эксплутационные и триботехнические характеристики смазочных материалов, т.к. образуют на поверхности трения прочную пленку, препятствующую схватыванию, снижающую коэффициент трения.

Известна противоизносная смазочная композиция РиМЕТ, выпускаемая ЗАО «НПП ВМП», которая представляет собой дисперсию нанокристаллических частиц сплава меди в жидком смазочном материале. (Золотухина Л.В., Батурина О.К., Пургина Т.П., Жидовинова С.В., Кишкопаров Н.В., Фришберг И.В. Формирование нанокристаллической структуры на поверхностях трения в присутствии нанопорошков сплавов меди в смазочном материале // Трение и смазка в машинах и механизмах, №3, 2007, с.7-12) /1/.

Активные функциональные наноматериалы, наночастицы или формирующие на поверхностях трения защитные граничные наноструктурные слои, препятствующие износу деталей, содержатся в смазочных композициях, предлагаемых на мировом рынке: Fenom Metal Conditioner/Nanoconditioner (противоизносные и противозадирные аддитивы к моторным, трансмиссионным, индустриальным маслам типа AW&EP); Old Chap Reconditioner (аддитивы - реставраторы к маслам для двигателей и трансмиссий с признаками износа и старения); Renom Engine / Gear NanoGuard (нанозащита двигателя и трансмиссии - присадки к моторному и трансмиссионному маслу); Fenom NanoCleaner / NanoTuning (наноочистители топливных систем и наноприсадки, улучшающие свойства топлив - добавки к моторному топливу), (Беклемышев В.И., Махонин И.И., Летов А.Ф., Балабанов В.И., Филиппов К.В. Разработка ресурсосберегающей автохимии и современных масел с применением эффективных компонентов и наноматериалов // Материалы межд. научно-практич. школы-конфер. «Славянтрибо-7а.» Рыбинск-Санкт-Петербург-Пушкин, 2006, Т.3. с.21-27) /2/.

Сформировались две основные группы способов получения нанокластеров металлов: физический и химический. К физическим способам относятся:

1. Газофазный синтез, заключающийся в испарении металла при контролируемой температуре в атмосфере инертного газа низкого давления с последующей конденсацией пара вблизи или на холодной поверхности. Этот метод позволяет получать наиболее чистые металлические частицы, однако ведутся поиски методов, обеспечивающих получение наночастиц без использования твердых подложек (Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. - М.: Физматлит, 2005. с.46-53) /3/.

2. Механическая обработка твердых металлических смесей инициаторами, например металлическими шарами, в результате которой происходят измельчение и пластическая деформация металлов /3/ с.73-81; (Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006, с.406-423) /4/. Однако механическое воздействие является локальным, поскольку не происходит равномерно по объему вещества, а только в области приложения поля напряжений, в результате образующиеся нанокластеры имеют большой разброс по размерам.

3. Дробление (диспергирование) металлов под воздействием ультразвуковых (УЗ) волн применяют при получении ультрадисперсных суспензий ряда металлов (Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. М.: Химия, 2000. с.186-188) /5/. При этом полученные кластеры металла имеют относительно большие размеры порядка 1000 нм.

К химическим способам относятся:

4. Способ с использованием пространственно-ограниченных систем - нанореакторов (мицелл, капель, пленок) (Третьяков Ю.Д., Лукашин А.В., Елисеев А.А. Синтез функциональных нанокомпозитов на основе твердофазных нанореакторов // Успехи химии 73 (9). 2004. с.974-996) /6/.

5. Термическое разложение и восстановление металлоорганических и металлонеорганических соединений, которые при определенной температуре распадаются с образованием синтезируемого вещества и выделением газовой фазы /3/ с.70-73; /5/ с.221-255; (Столяров И.П., Гаугаш Ю.В., Крюкова Г.Н., Кочубей Д.И., Варгафтик М.Н., Моисеев И.И. Новые нанокластеры палладия: синтез, строение и каталитические свойства // Изв. АН. Сер. Хим., 2004, №6 с.1147-1152) /7/. Нагревание исходного сырья до температуры 2000-8000 К в особых условиях (вакуум или инертный газ) усложняет технологию.

6. Кристаллизацией из растворов соответствующих солей с выделением наноразмерных медьсодержащих порошков на катоде при восстановлении в ходе электролиза /5/ с.219-221 (Чуловская С.А., Парфенюк В.И., Лилин С.А., Гиричев Г.В. Электрохимический синтез и высокотемпературные исследования наноразмерных медьсодержащих порошков. // Химия и химическая технология 2006. Т. 49. вып.1 с.35-39) /8/. В состав электролитического раствора входят поверхностно-активные вещества (ПАВ), которые стабилизируют образующиеся нанокластеры металлов. Недостатком метода является широкий разброс нанокластеров по размерам.

Наиболее близким по технической сущности к заявляемому изобретению является способ получения нанокластеров металлов, который заключается в сочетании электрохимического восстановления металлов из водно-органического раствора электролита с одновременным диспергированием под воздействием ультразвуковых колебаний восстановленного на катоде слоя металла (US 5925463, B01J 23/44, B01J 23/46, B01J 35/00, 1999-07-20) /9/, принимаемый за прототип.

Для стабилизации нанокластеров в водно-органический раствор электролита добавляют тетраалкиламмониевые и тетраалкилфосфониевые соли. В полученный раствор помещают катод и анод. В качестве материала анода используют металлы широкой группы периодической системы, в том числе медь Cu, свинец Pb, цинк Zn, никель Ni. Электрохимическое восстановление металлов осуществляется традиционным способом в установленной на основании электрохимической ванне с водно-органическим раствором электролита. При подключении электродов к источнику постоянного тока происходит растворение металлического анода. Ионы металла переносятся к катоду и восстанавливаются на нем. Под действием УЗ-колебаний одновременно с электролизом осуществляют диспергирование восстановленного слоя металла на поверхности катода. При этом нанокластеры металлов удаляются с поверхности катода, стабилизируются тетраалкиламмониевыми и тетраалкилфосфониевыми солями и переходят в раствор в коллоидном состоянии. Полученные способом и устройством-прототипом нанокластеры металлов предназначены для изготовления катализаторов, имеют малые размеры 2-30 нм и высокую химическую активность, что требует специальных методов защиты при их изготовлении (использование инертной атмосферы, свободных от растворенного кислорода растворителей). Наличие высокой химической активности препятствует использованию получаемых нанокластеров в качестве присадки к смазочным композициям.

Техническим результатом настоящего изобретения является получение стабилизированных нанокластеров металлов группы Cu, Pb, Zn, Ni, устойчивых к действию кислорода и влаги, которые могут быть использованы в качестве присадки к смазочным композициям, получение водно-спиртовых смазочных композиций с высокими триботехническими характеристиками, обеспечение возможности контроля триботехнических характеристик водно-спиртовых смазочных композиций в процессе получения нанокластеров.

Указанный технический результат достигается тем, что в известном способе получения нанокластеров металлов, включающем электрохимическое восстановление металла, выбранного из группы Cu, Pb, Zn, Ni, в водно-органическом растворе электролита с растворимым анодом из восстанавливаемого металла с одновременным диспергированием восстановленного металлического слоя на катоде, согласно изобретению, электрохимическое восстановление и диспергирование восстановленного металлического слоя осуществляют в водном растворе трех-шестиатомных спиртов, при этом диспергирование ведут путем трения пары «стальной катод-сталь» под воздействием регулируемой нагрузки не менее 7,5 МПа.

Устройство для получения нанокластеров металлов электрохимическим восстановлением металла, выбранного из группы Cu, Pb, Zn, Ni, содержит установленную на основании электрохимическую ванну для водно-органического раствора электролита, погруженные в нее катод и растворимый анод из восстанавливаемого металла, подключенные к источнику постоянного электрического тока.

Согласно изобретению катод выполнен в форме стального диска, который жестко закреплен на дне электрохимической ванны, установленной на основании на опорных шариковых подшипниках, над поверхностью стального диска с возможностью вертикального перемещения установлена державка, на нижней поверхности которой равномерно по окружности выполнены три паза с закрепленными в них стальными пальцами, рабочие торцы которых контактируют с поверхностью стального диска с образованием зоны трения, причем нерабочие поверхности пальцев и стального диска имеют диэлектрическое пленочное покрытие для изоляции от раствора электролита, а верхняя часть державки выполнена с выступом, в центре которого размещена шаровая опора, связанная посредством головки привода, имеющей поводок, со шпиндельным валом, который соединен подвижным блоком посредством рычага с регулируемым грузом, а на внешней поверхности электрохимической ванны закреплен динамометр.

В частных случаях выполнения способа в качестве спиртового компонента раствора электролита используют глицерин C 3 H 8 O 3 или эритрит С 4 Н 10 О 4 , или арабит

C 5 H 12 O 5 , или сорбит C 6 H 14 O 6 .

При трении пары стальной диск-сталь под воздействием регулируемой нагрузки не менее 7,5 МПа в водно-спиртовом растворе электролита на поверхности неподвижного катода происходит диспергирование восстановленного слоя металла с образованием нанокластеров размером 15-50 нм, устойчивых к действию влаги и кислорода, за счет того, что окисление дисперсных частиц металлов происходит непосредственно в водно-спиртовом растворе электролита, таким образом, исключается необходимость использования специальных методов защиты от окислительных реакций. Уменьшение нагрузки ниже 7,5 МПа приводит к увеличению времени выхода пары трения стальной диск-сталь на режим безызносности, а увеличение нагрузки более 10 МПа не было исследовано, т.к. мощность имеющегося электродвигателя не была достаточна для получения вращения вала при повышенных нагрузках более 10 МПа. Увеличение нагрузки приводит к уменьшению времени выхода пары трения на режим безызносности.

Использование трех- шестиатомных спиртов для стабилизации нанокластеров мягких металлов обеспечивает триботехническую эффективность смазочной композиции за счет уменьшения коэффициента трения пары стальной диск-сталь до 10 -3 , а величины интенсивности изнашивания пары трения - до 10 -11 . Это связано с тем, что с увеличением числа атомов кислорода в молекуле спирта быстро растет количество химических реакций, протекающих под действием трения, а вместе с ними и число возможных стереохимических структур, участвующих в модификации поверхности трения. Кроме того, при трении пары стальной диск-сталь в водно-спиртовом растворе электролита протекают химические реакции, в результате которых образуются продукты, содержащие карбонильные и карбоксильные группы, являющиеся стабилизаторами образующихся нанокластеров, что придает устойчивость нанокластерам металлов к действию кислорода и влаги.

Изобретение поясняется чертежами, графиками, фотомикрографиями.

На фиг.1 приведен схематический чертеж устройства для получения нанокластеров металлов, вид спереди, вертикальный разрез.

На фиг.2 приведен схематический чертеж стального диска, вид сверху.

На фиг.3 приведена схема динамометра, вид сверху, разрез А.

На фиг.4 приведены зависимости коэффициентов трения f от времени электролиза t, с, для медного анода, полученные с использованием заявляемого устройства при нагрузке 7,5 МПа, где кривая 1 соответствует водному раствору этиленгликоля С 2 Н 6 О 2 , 2 - водному раствору глицерина С 3 Н 8 О 3 , 3 - водному раствору эритрита С 4 Н 10 О 4 , 4 - водному раствору арабита С 5 Н 12 О 5 , 5 - водному раствору сорбита С 6 Н 14 О 6 .

На фиг.5 приведены зависимости коэффициентов трения f от времени электролиза t, с, для свинцового анода, полученные с использованием заявляемого устройства при нагрузке 7,5 МПа, где кривая 1 соответствует водному раствору этиленгликоля С 2 Н 6 О 2 , 2 - водному раствору глицерина С 3 Н 8 О 3 , 3 - водному раствору эритрита С 4 Н 10 О 4 , 4 - водному раствору арабита С 5 Н 12 О 5 , 5 - водному раствору сорбита

На фиг.6 приведены фотомикрографии рабочей поверхности одного из металлических пальцев, содержащей нанокластеры свинца.

На фиг.7 приведены фотомикрографии рабочей поверхности одного из стальных пальцев, содержащей нанокластеры меди.

На фиг.8 приведены зависимости коэффициентов трения f от времени электролиза t, с, для медного анода, полученные с использованием заявляемого устройства при нагрузке 5 МПа, где кривая 1 соответствует водному раствору глицерина C 3 H 8 O 3 , 2 - водному раствору эритрита C 4 H 10 O 4 , 3 - водному раствору арабита C 5 H 12 O 5 , 4 - водному раствору сорбита C 6 H 14 O 6 .

Устройство для получения нанокластеров металлов электрохимическим восстановлением металла, выбранного из группы Cu, Pb, Zn, Ni, (фиг.1) содержит установленную на основании 1 на опорных шариковых подшипниках 2 электрохимическую ванну 3, выполненную из диэлектрика, выдерживающего нагревание до 200°С, для водно-спиртового раствора 4. В качестве спиртового компонента раствора электролита используют трехатомный спирт - глицерин C 3 H 8 O 3 , четырехатомный спирт - эритрит C 4 H 10 O 4 , пятиатомный спирт - арабит С 5 Н 12 О 5 , шестиатомный спирт - сорбит С 6 Н 14 О 6 . В электрохимическую ванну 3 погружен стальной катод 5 и анод 6, выполненный из металла, выбранного из группы металлов: Cu, Pb, Zn, Ni, способных образовывать на поверхности трения сервовитную пленку в зоне контакта трущихся деталей, что приводит к уменьшению коэффициента трения на порядок по сравнению с отсутствием сервовитной пленки. Катод 5 и анод 6 подключены к полюсам источника постоянного тока 7. Катод 5 выполнен в форме стального диска, который жестко закреплен на дне электрохимической ванны 3. Над поверхностью стального диска 5 с возможностью вертикального перемещения установлена державка 8, выполненная из диэлектрика, на нижней поверхности которой равномерно по окружности выполнены три паза 9 с закрепленными в них с помощью крепежных винтов 10 стальными пальцами 11. Верхняя часть державки 8 снабжена выступом 12, в центре которого размещена шаровая опора 13, связанная посредством головки привода 14 со шпиндельным валом 15. На нижней поверхности головки привода 14 установлен поводок 16, обеспечивающий передачу вращательного движения от головки привода 14 к державке 8. Шпиндельный вал 15 соединен подвижным блоком 17 посредством рычага 18 с регулируемым грузом 19. На внешней поверхности электрохимической ванны 3 закреплен динамометр 20. В конкретном примере выполнения рабочие поверхности пары трения торцовая поверхность стальных пальцев 11- стальной диск 5, имели шероховатость Ra=0,63 мкм. После обезжиривания этиловым спиртом и сушки при комнатной температуре указанная пара трения погружалась в электрохимическую ванну 3. В конкретном примере выполнения анод выполнен из меди или свинца, которые наиболее часто используют в качестве металлоплакирующей присадки к смазочным композициям (RU 2161180 С, 7 С10М 155/02 2000-12-27) /10/, (RU 2123030 C, 6 С10М 125/00, 1998-12-10) /11/, (RU 2019563 C, 5 С10М 169/04, 1994-09-15) /12/, (SU 1214735 A, 4 С10М 133/16, 1986-02-28) /13/. При подключении источника постоянного тока 7 силой 20 мA и включении электропривода (на чертеже не показан) приводится во вращательное движение шпиндельный вал 15 и с помощью поводка 16 вращательное движение шпиндельного вала 15 передается державке 8 и стальным пальцам 11, нижние рабочие торцы которых соприкасаются с рабочей поверхностью стального диска 5 и образуют зону трения 21 (фиг.2). При этом на поверхности трения за счет растворения мягкого металла анода формируется металлическая пленка, которая подвергается деформации и истиранию в процессе трения под воздействием регулируемой нагрузки не менее 7,5 МПа, что приводит к накоплению нанокластеров меди или свинца размером 15-50 нм в водно-спиртовом растворе электролита. Скорость вращения стальных пальцев 11 выбирают из условия обеспечения восстановления слоя из нескольких атомов металла на поверхности стального диска 5 и составляет 0,5-1,0 м/с. При скольжении пальцев 11 по зоне трения 21 стального диска 5 возникает крутящий момент, воздействующий на стенки электрохимической ванны 3, т.к. стальной диск 5 жестко закреплен на дне электрохимической ванны 3. Крутящий момент вызывает проворачивание электрохимической ванны 3 до уравновешивания его пружиной 22 динамометра 20, закрепленного между рычагом 23 и стойкой 24 (фиг.3). Боковые поверхности 25 стальных пальцев 11 (фиг.1) и нерабочая поверхность 26 (фиг.2) стального диска 5 покрыты диэлектрической защитной пленкой для изоляции этих зон от воздействия электролита. По величине деформации пружины 22 динамометра 20 определяется окружная сила F пр. Коэффициент трения рассчитывали по формуле

где F пр - окружная сила, Н; l 1 - расстояние от точки закрепления пружины динамометра к рычагу до оси вращения, м; l 2 - расстояние между осью вращения и центрами стальных пальцев, М; Р - сила прижатия (или осевая нагрузка на пальцы), Н.

Интенсивность изнашивания определяли по формуле

где h - величина линейного износа, рассчитанная по потере массы пальцев и стального диска, м; L - путь трения, рассчитанный по формуле 2πrn; r -радиус зоны трения, м; n - число рабочих циклов.

В каждом опыте путь трения составлял порядка 10 км, что было достаточно для получения необходимой для взвешивания величины.

В качестве смазочных жидкостей использовались водно-органические растворы спиртов марки ч.д.а.: трехатомный спирт - глицерин C 3 H 8 O 3 , четырехатомный спирт- эритрит С 4 Н 10 О 4 , пятиатомный спирт - арабит С 5 Н 12 О 5 , шестиатомный спирт - сорбит С 6 Н 14 О 6 . Для увеличения электропроводности в водно-органические растворы добавляли 0,01М перхлората лития LiClO 4 марки х.ч. Растворы готовились в соотношении компонентов: 50% спирта на 50% воды. Съемные стальной диск и стальные пальцы взвешивали для определения величины линейного износа на электронных лабораторных весах ЛВ 210-А и рассчитывали по формуле (2) интенсивность изнашивания пары трения 5, 11 (фиг.1). Как видно из фиг.4, 5 триботехническая эффективность металлсодержащих смазочных композиций зависит от атомности спирта и увеличивается при переходе от двухатомного спирта этиленгликоля (кривая 1) к шестиатомному спирту сорбиту (кривая 5). Образование нанокластеров свинца или меди для водных растворов глицерина (кривая 2), эритрита (кривая 3), арабита (кривая 4) и сорбита (кривая 5) способствует выходу трибологической системы на режим избирательного переноса или безызносности (Гаркунов Д.Н. Научные открытия в триботехнике; эффект безызносности; водородное изнашивание металлов. М.: Изд-во МСХА, 2004. С.15-17, с.195-205) /11/, т.к. значения коэффициента трения устанавливаются на уровне 10 -3 . Причем время выхода на режим безызносности уменьшается в ряду глицерин - эритрит - арабит - сорбит. Величина интенсивности изнашивания для водных растворов трех-шестиатомных спиртов составляет порядка 10 -11 . Нанокластеры мягких металлов в процессе трения заполняют микронеровности поверхностей трения, увеличивая фактическую площадь контакта, что приводит к резкому снижению давления в зоне трения, что облегчает по сравнению с основным металлом сопротивление сдвигу на участках металлического контакта. При этом время, необходимое для перехода системы, содержащей нанокластеры свинца (фиг.5) или меди (фиг.4) в режим безызносности, уменьшается в указанном ряду металлов, т.е. нанокластеры меди являются более эффективными.

Согласно результатам атомно-силовой микроскопии (фиг.6, фиг.7), выполненным на сканирующем зондовом микроскопе Solver Р47Н с помощью промышленных кремниевых кантилеверов NSG10, полученные заявляемым способом нанокластеры меди и свинца имеют размеры 15-50 нм. Аналогичные результаты следует ожидать и для цинка и никеля. Для получения ультрадисперсных порошков нанокластеры металлов предварительно отделяют от водно-спиртового раствора с помощью ультрацентрифугирования и затем в качестве металлоплакирующей присадки добавляют к различным смазочным композициям в количестве 0,5-3%. Кроме того, сам водно-спиртовой раствор электролита с нанокластерами металлов является готовой смазочной композицией и может быть разлит в емкости для реализации.

Как видно из фиг.8 уменьшение нагрузки на пару трения «стальной диск-сталь» приводит к увеличению времени выхода пары трения на режим безызносности с 8,3 часа (30000 с) (фиг.4, кривая 5) до 12,5 часов (45000 с) (фиг.8 кривая 4), а в случае глицерина не обеспечивает режим безызносности (фиг.8 кривая 1).

Пример 1. Получение нанокластеров меди.

Поверхности стального диска 5 и стальных пальцев 11 обрабатывают наждачной бумагой, обезжиривают этиловым спиртом и высушивают. В электрохимическую ванну 3 добавляют водный раствор сорбита в соотношении 1:1 и 0,01М перхлората лития LiClO 4 марки х.ч. Опускают медный анод 6, изготовленный из листовой меди размером 1×2 см, толщиной 1 мм, предварительно обработанный в концентрированной азотной кислоте, промытый и высушенный. Одновременно с включением электропривода подключают источник электрического тока силой 20 мA. Посредством рычага 18 с регулируемым грузом 19 устанавливают регулируемую нагрузку 7,5 МПа в паре трения. Скорость вращения пальцев составляет 0,5 м/с. В начале трения идет процесс приработки, который характеризуется относительно высокими значениями коэффициента трения. По мере накопления нанокластеров в растворе величина коэффициента трения понижается и через 8,3 часа (30000 с) трибологическая система переходит в режим безызносности. На рабочих поверхностях стального диска 5 и пальцев 11 образуется видимый невооруженным глазом блестящий слой меди. Полученная смазочная композиция содержит нанокластеры меди в коллоидном стабильном состоянии.

Пример 2. Получение нанокластеров свинца.

Поверхности стального диска 5 и пальцев 11 обрабатывают наждачной бумагой, обезжиривают этиловым спиртом и высушивают. В электрохимическую ванну 3 добавляют водный раствор сорбита (1:1), 0,01М перхлората лития LiClO 4 марки х.ч. и погружают анод 6, изготовленный из свинцовой пластины размером 1×1 см, толщиной 3 мм, предварительно обработанный в концентрированной азотной кислоте, промытый и высушенный.

Одновременно с включением электропривода подключают источник 7 постоянного электрического тока силой 20 мA и устанавливают регулируемую нагрузку 7,5 МПа в паре трения. Скорость вращения стальных пальцев 11 составляет 0,5 м/с. Процесс приработки пары трения характеризуется относительно высокими значениями коэффициента трения. По мере накопления нанокластеров в растворе электролита значения коэффициента трения понижаются и через 11,1 часа (40000 с) трибологическая система переходит в режим безызносности. На рабочей поверхности стального диска 5 и пальцев 11 образуется видимый невооруженным глазом блестящий слой свинца. Полученная смазочная композиция содержит нанокластеры свинца в коллоидном стабильном состоянии. Разработанный экспериментальный образец устройства для получения нанокластеров металлов позволяет получать непосредственно в процессе восстановления смазочные композиции с прогнозируемыми противоизносными характеристиками, что не достигалось ранее в известных аналогах.

Источники информации

1. Золотухина Л.В., Батурина О.К., Пургина Т.П., Жидовинова С.В., Кишкопаров Н.В., Фришберг И.В. Формирование нанокристаллической структуры на поверхностях трения в присутствии нанопорошков сплавов меди в смазочном материале // Трение и смазка в машинах и механизмах, №3, 2007, с.7-12.

2. Беклемышев В.И., Махонин И.И., Летов А.Ф., Балабанов В.И., Филиппов К.В. Разработка ресурсосберегающей автохимии и современных масел с применением эффективных компонентов и наноматериалов // Материалы межд. научно-практич. школы-конфер. «Славянтрибо-7а.» Рыбинск-Санкт-Петербург-Пушкин, 2006, Т.3. с.21-27.

3. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. - М.: Физматлит, 2005. с.46-53.

4. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006, с.406-423.

5. Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. М.: Химия, 2000. с.186-188.

6. Третьяков Ю.Д., Лукашин А.В., Елисеев А.А. Синтез функциональных нанокомпозитов на основе твердофазных нанореакторов // Успехи химии 73 (9), 2004. с.974-996.

7. Столяров И.П., Гаугаш Ю.В., Крюкова Г.Н., Кочубей Д.И., Варгафтик М.Н., Моисеев И.И. Новые нанокластеры палладия: синтез, строение и каталитические свойства // Изв. АН. Сер. Хим., 2004, №6 с.1147-1152.

8. Чуловская С.А., Парфенюк В.И., Лилин С.А., Гиричев Г.В. Электрохимический синтез и высокотемпературные исследования наноразмерных медьсодержащих порошков. // Химия и химическая технология 2006. Т.49. вып.1 с.35-39.

9. US 5925463, B01J 23/44, B01J 23/46, B01J 35/00, 1999-07-20 - прототип.

10. RU 2161180 C, 7 С10М 155/02, 2000-12-27.

11. RU 2123030 C, 6 С10М 125/00, 1998-12-10.

12. RU 2019563 C, 5 С10М 169/04, 1994-09-15.

13. SU 1214735 A, 4 C10M 133/16, 1986-02-28.

14. Гаркунов Д.Н. Научные открытия в триботехнике; эффект безызносности; водородное изнашивание металлов. М.: Изд-во МСХА, 2004. С.15-17, с.195-205.

1. Способ получения нанокластеров металлов, включающий электрохимическое восстановление металла, выбранного из группы Cu, Pb, Zn, Ni, в водно-органическом растворе электролита с растворимым анодом из восстанавливаемого металла с одновременным диспергированием восстановленного металлического слоя на катоде, отличающийся тем, что электрохимическое восстановление и диспергирование восстановленного металлического слоя осуществляют в водном растворе трех-шестиатомных спиртов, при этом диспергирование ведут путем трения пары «стальной катод-сталь» под воздействием регулируемой нагрузки не менее 7,5 МПа.

2. Способ по п.1, отличающийся тем, что в качестве спиртового компонента раствора электролита используют глицерин С 3 Н 8 О 3 .

3. Способ по п.1, отличающийся тем, что в качестве спиртового компонента раствора электролита используют эритрит С 4 Н 10 О 4 .

4. Способ по п.1, отличающийся тем, что в качестве спиртового компонента раствора электролита используют арабит С 5 Н 12 О 5 .

5. Способ по п.1, отличающийся тем, что в качестве спиртового компонента раствора электролита используют сорбит С 6 Н 14 О 6 .

6. Устройство для получения нанокластеров металлов электрохимическим восстановлением металла, выбранного из группы Cu, Pb, Zn, Ni, содержащее установленную на основании электрохимическую ванну для водно-органического раствора электролита, погруженные в нее катод и растворимый анод из восстанавливаемого металла, подключенные к источнику постоянного электрического тока, отличающееся тем, что катод выполнен в форме стального диска, который жестко закреплен на дне электрохимической ванны, установленной на основании на опорных шариковых подшипниках, над поверхностью стального диска с возможностью вертикального перемещения установлена державка, на нижней поверхности которой равномерно по окружности выполнены три паза с закрепленными в них стальными пальцами, рабочие торцы которых контактируют с поверхностью стального диска с образованием зоны трения, причем нерабочие поверхности пальцев и стального диска имеют диэлектрическое пленочное покрытие для изоляции от раствора электролита, а верхняя часть державки выполнена с выступом, в центре которого размещена шаровая опора, связанная посредством головки привода, имеющей поводок, со шпиндельным валом, который соединен подвижным блоком посредством рычага с регулируемым грузом, на внешней поверхности электрохимической ванны закреплен динамометр.

Изобретение относится к смазочным композициям, в частности к многокомпонентным добавкам или концентратам, вводимым в минеральные масла с целью получения высококачественных пластичных (консистентных) смазочных материалов, обладающих повышенной термостойкостью и адгезией к поверхности трения, высокой задиро- и износостокостью.

Изобретение относится к составам (смазкам), предназначенным для защиты от задира и износа, а также "схватывания" сопряженных поверхностей как в условиях атмосферной коррозии, так и тепловых воздействий, например в конструкциях автомобилей, резьбовых соединениях сборно-разборных складских и магистральных трубопроводов, и может быть использовано в машиностроении, нефтехимической и других отраслях промышленности.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из карбид-кремниевых жаростойких бетонов, получаемых без предварительного обжига.

Изобретение относится к области разработки металлоплакирующих присадок к смазочным композициям, содержащим твердофазные ультрадисперсные добавки металлов, и предназначено для получения нанокластеров меди, свинца, цинка, никеля с размерами частиц 15-50 нм


Цветное витражное стекло средневековых соборов, содержит наноразмерные металлические частицы. Размер наночастиц золота влияет на оптический спектр поглощения кварцевого стекла (окиси кремния ) в видимом диапазоне. См рис пул139.+

Рис Кружками показан спектр поглощения 20 нм частиц золота в стекле. Максимум поглощения 530 нм(зеленый цвет), черточками показан спектр поглощения 80 нм частиц золота в стекле максимум поглощения 560 нм.(желто-зеленый).

При очень высоких частотах электроны проводимости в металлах ведут себя как плазма –электрически нейтральный ионизированный газ. В плазме твердого тела отрицательные заряды –электроны, положительные заряды-ионы решетки. Если кластеры имеют размеры меньше длины волны падающего света, и не взаимодействуют друг с другом, то электромагнитная волна вызывает колебания электронной плазмы приводящее к её поглощению.

Для вычисления зависимости коэффициента поглощения от длины волны используют теорию рассеяния Ми. Коэффициент поглощения маленькой сферической частицы металла. находящейся в непоглощающей среде

Где -концентрация сфер объемом , , - действительная и мнимая части комплексной диэлектрической проницаемости сфер, -показатель преломления непоглощающей среды, -длина волны падающего света.

Другим важным для технологии свойством композитных металлизированных стекол является оптическая нелинейность - зависимость показателей преломления от интенсивности падающего света .

Нелинейные оптические эффекты можно использовать при создании оптических ключей, которые станут основными элементами фотонного компьютера.

Старый метод получения композитных металлизированных стекол состоит в добавлении металлических частиц к расплаву. При этом сложно управлять свойствами стекла, зависящими от степени агрегирования частиц. Новый метод ионная имплантация , когда стекло обрабатывается ионным пучком, состоящим из атомов имплантируемого металла с энергиями от 10 КэВ до 10 МэВ.

Другим методом является ионный обмен см рис140 пул . Показана экспериментальная установка для введения частиц серебра в стекло путем ионного обмена. Одновалентные приповерхностные атомы, например натрий, присутствующий во всех стеклах, замещается другими ионами, например серебром. Для этого стеклянная основа помещается в расплав соли, находящийся между электродами, которым приложено напряжение указанной на рис полярности. Ионы натрия в стекле диффундируют к отрицательному электроду, а серебро диффундирует из серебросодержащего электролита на поверхность стекла.

Рис. Ионообменная установка для допирования стеклянной подложки ионами серебра.

Слева положительный электрод.

Нелинейность характеризуется поляризацией под действием напряженности электрического поля световой волны

Где -диэлектрическая постоянная среды.

В наноматериалах, включающие нанокластеры золота и серебра, плазмонный резонанс возникает при совпадении частот излучения лазера с частотой колебания свободных электронов в нанокластерах металлов. Это ведет к локализации возбуждения в нанокластерах и к резкому усилению локального поля, которое генерируется первичным излучением лазера с напряженностью более . Полимерный нанокомпозит на основе диацетиленового мономера включающий кластеры золота с размерами около 2 нм содержащий 7-16 % металла позволял увеличивать в 200 раз оптическую поляризуемость третьего порядка . На основе такого нелинейного оптического материала можно создавать электронно-оптические преобразователи со значительным усилением.