Метод наискорейшего спуска matlab. Метод наискорейшего спуска

В этом варианте градиентного метода минимизирующая последовательность {X k } также строится по правилу (2.22). Однако величина шага a k находится в результате решения вспомогательной задачи одномерной минимизации

min{j k (a) | a>0 }, (2.27)

где j k (a)=f(X k - a· (X k)). Таким образом, на каждой итерации в направлении антиградиента выполняется исчерпывающий спуск. Для решения задачи (2.27) можно воспользоваться одним из методов одномерного поиска, изложенных в разделе 1, например, методом поразрядного поиска или методом золотого сечения.

Опишем алгоритм метода наискорейшего спуска.

Шаг 0. Задать параметр точности e>0, выбрать X 0 ÎE n , положить k=0.

Шаг 1. Найти (X k) и проверить условие достижения заданной точности || (x k) ||£ e. Если оно выполняется, то перейти к шагу 3, иначе - к шагу 2.

Шаг 2. Решить задачу (2.27), т.е. найти a k . Найти очередную точку , положить k=k+1 и перейти к шагу 1.

Шаг 3 Завершить вычисления, положив X * = X k , f * = f(X k).

Типовой пример

Минимизировать функцию

f(x)=x 1 2 +4x 2 2 -6x 1 -8x 2 +13; (2.28)

Вначале решим задачу классическим методом. Запишем систему уравнений, представляющих собой необходимые условия безусловного экстремума

Решив ее, получим стационарную точку X*=(3;1). Далее проверим выполнение достаточного условия, для чего найдем матрицу вторых производных

Так как, согласно критерию Сильвестра, эта матрица положительно определена при " , то найденная точка X* является точкой минимума функции f(X). Минимальное значение f *=f(X*)=0. Таково точное решение задачи (11).

Выполним одну итерацию метода градиентого спуска для (2.28). Выберем начальную точку X 0 =(1;0), зададим начальный шаг a=1 и параметр l=0,5. Вычислим f(X 0)=8.

Найдем градиент функции f(X) в точке X 0

(X 0)= = (2.29)

Определим новую точку X=X 0 -a· (X 0), вычислив ее координаты

x 1 =

x 2 = (2.30)

Вычислим f(X)= f(X 0 -a· (X 0))=200. Так как f(X)>f(X 0), то выполняем дробление шага, полагая a=a·l=1·0,5=0,5. Снова вычисляем по формулам (2.30) x 1 =1+4a=3; x 2 =8a=4 и находим значение f(X)=39. Так как опять f(X)>f(X 0), то еще уменьшаем величину шага, полагая a=a·l=0,5·0,5=0,25. Вычисляем новую точку с координатами x 1 =1+4·0,25=2; x 2 =8·0,25=2 и значение функции в этой точке f(X)=5. Поскольку условие убывания f(X)

Выполним одну итерацию по методу наискорейшего спуска для (2.28) с той же начальной точкой X 0 =(1;0). Используя уже найденный градиент (2.29), находим

X= X 0 -a· (X 0)

и строим функцию j 0 (a)=f(X 0 -a· (X 0))=(4a-2) 2 +4(8a-1) 2 . Минимизируя ее с помощью необходимого условия

j 0 ¢(a)=8·(4a - 2)+64·(8a - 1)=0

находим оптимальное значение величины шага a 0 =5/34.

Определяем точку минимизирующей последовательности

X 1 = X 0 -a 0 · (X 0) .

Пример 6.8.3-1. Найти минимум функции Q(x,y) методом ГДШ.

Пусть Q(x,y) = x 2 +2y 2 ; x 0 = 2;y 0 = 1.

Проверим достаточные условия существования минимума:

Проделаем одну итерацию согласно алгоритму.

1. Q(x 0 ,y 0) = 6.

2. При х = x 0 и y = y 0 ,

3. Шаг l k = l 0 = 0,5

Таким образом, 4 < 8, следовательно, условие сходимости не выполняется и требуется, уменьшив шаг (l=l /2), повторять п.п.3-4 до выполнения условия сходимости. То есть, полученный шаг используется для нахождения следующей точки траектории спуска.

Суть метода состоит в следующем. Из выбранной точки (x 0 ,y 0) спуск осуществляют в направлении антиградиента до тех пор, пока не будет достигнуто минимальное значение целевой функции Q(x, y) вдоль луча (рис. 6.8.4-1). В найденной точке луч касается линии уровня. Затем из этой точки спуск проводится в направлении антиградиента (перпендикулярном линии уровня) до тех пор, пока соответствующий луч не коснется в новой точке проходящей через нее линии уровня, и т.д.

Выразим целевую функцию Q(x, y) через шаг l. При этом представим целевую функцию на определенном шаге как функцию одной переменной, т.е. величины шага

Величина шага на каждой итерации определяется из условия минимума :

Min( (l)) l k = l*(x k , y k), l >0.

Таким образом, на каждой итерации выбор шага l k предполагает решение задачи одномерной оптимизации. По способу решения этой задачи различают:

· аналитический метод (НСА);

· численный метод (НСЧ).

В методе НСА значение шага получают из условия , а в методе НСЧ величину l k находят на отрезке c заданной точностью, используя один из методов одномерной оптимизации.

Пример 6.8.4-1. Найти минимум функции Q(x,y)=x 2 + 2y 2 с точностью e=0.1, при начальных условиях: x 0 =2; y 0 =1.

Проделаем одну итерацию методом НСА .


=(x-2lx) 2 +2(y-4ly) 2 = x 2 -4lx 2 +4l 2 x 2 +2y 2 -16ly 2 +32l 2 y 2 .

Из условия ¢(l)=0 найдем значение l*:

Полученная функция l=l(x,y) позволяет найти значение l. При x=2 и y=1 имеем l=0.3333.

Вычислим значения координат следующей точки:

Проверим выполнение критерия окончания итераций при k=1:

Поскольку |2*0.6666|>0.1 и |-0.3333*4|>0.1 , то условия окончания процесса итераций не выполнены, т.е. минимум не найден. Поэтому следует вычислить новое значение l при x=x 1 и y=y 1 и получить координаты следующей точки спуска. Вычисления продолжаются до тех пор, пока не выполнятся условия окончания спуска.

Отличие численного метода НС от аналитического состоит в том, что поиск значения l на каждой итерации происходит одним из численных методов одномерной оптимизации (например, методом дихотомии или методом золотого сечения). При этом в качестве интервала неопределенности служит диапазон допустимых значений l - .

Градиентом дифференцируемой функции f(x) в точке х называется n -мерный вектор f(x ) , компоненты которого являются частными производными функции f(х), вычисленными в точке х , т. е.

f"(x) = (дf(х )/дх 1 , …, дf(х )/дх n) T .

Этот вектор перпендикулярен к плоскости, проведенной через точку х , и касательной к поверхности уровня функции f(x), проходящей через точку х .В каждой точке такой поверхности функция f(x) принимает одинаковое значение. Приравнивая функцию различным постоянным величинам С 0 , С 1 , ... , получим серию поверхностей, характеризующих ее топологию (Рис. 2.8).

Рис. 2.8. Градиент

Вектор-градиент направлен в сторону наискорейшего возрастания функции в данной точке. Вектор, противоположный градиенту (-f’(х )) , называется антиградиентом и направлен в сторону наискорейшего убывания функции. В точке минимума градиент функции равен нулю. На свойствах градиента основаны методы первого порядка, называемые также градиентным и методами минимизации. Использование этих методов в общем случае позволяет определить точку локального минимума функции.

Очевидно, что если нет дополнительной информации, то из начальной точки х разумно перейти в точку х , лежащую в направлении антиградиента - наискорейшего убывания функции. Выбирая в качестве направления спуска р [k ] антиградиент -f’(х [k]) в точке х [k ], получаем итерационный процесс вида

х[k+ 1] = x [k ]-a k f"(x [k]) , а k > 0; k =0, 1, 2, ...

В координатной форме этот процесс записывается следующим образом:

x i [k +1]=х i [k ] - a k f(x [k]) /x i

i = 1, ..., n ; k = 0, 1, 2,...

В качестве критерия останова итерационного процесса используют либо выполнение условия малости приращения аргумента || x [k +l] - x [k ] || <= e , либо выполнение условия малости градиента

|| f’(x [k +l]) || <= g ,

Здесь e и g - заданные малые величины.

Возможен и комбинированный критерий, состоящий в одновременном выполнении указанных условий. Градиентные методы отличаются друг от друга способами выбора величины шага а k .

При методе с постоянным шагом для всех итераций выбирается некоторая постоянная величина шага. Достаточно малый шаг а k обеспечит убывание функции, т. е. выполнение неравенства

f(х[k +1]) = f(x [k] – a k f’(x [k])) < f(x [k]) .

Однако это может привести к необходимости проводить неприемлемо большое количество итераций для достижения точки минимума. С другой стороны, слишком большой шаг может вызвать неожиданный рост функции либо привести к колебаниям около точки минимума (зацикливанию). Из-за сложности получения необходимой информации для выбора величины шага методы с постоянным шагом применяются на практике редко.

Более экономичны в смысле количества итераций и надежности градиентные методы с переменным шагом, когда в зависимости от результатов вычислений величина шага некоторым образом меняется. Рассмотрим применяемые на практике варианты таких методов.

При использовании метода наискорейшего спуска на каждой итерации величина шага а k выбирается из условия минимума функции f(x) в направлении спуска, т. е.
f(x [k ] –a k f’(x [k ])) = f(x [k] – af"(x [k ])) .

Это условие означает, что движение вдоль антиградиента происходит до тех пор, пока значение функции f(x) убывает. С математической точки зрения на каждой итерации необходимо решать задачу одномерной минимизации по а функции
j (a) = f(x [k ] - af"(x [k ])) .

Алгоритм метода наискорейшего спуска состоит в следующем.

1. Задаются координаты начальной точки х .

2. В точке х [k ], k = 0, 1, 2, ... вычисляется значение градиента f’(x [k ]) .

3. Определяется величина шага a k , путем одномерной минимизации по а функции j (a) = f(x [k ] - af"(x [k ])).

4. Определяются координаты точки х [k+ 1]:

х i [k+ 1] = x i [k ] – а k f’ i (х [k ]), i = 1 ,..., п.

5. Проверяются условия останова стерационного процесса. Если они выполняются, то вычисления прекращаются. В противном случае осуществляется переход к п. 1.

В рассматриваемом методе направление движения из точки х [k ] касается линии уровня в точке x [k+ 1] (Рис. 2.9). Траектория спуска зигзагообразная, причем соседние звенья зигзага ортогональны друг другу. Действительно, шаг a k выбирается путем минимизации по а функции?(a) = f(x [k] - af"(x [k ])) . Необходимое условие минимума функции d j (a)/da = 0. Вычислив производную сложной функции, получим условие ортогональности векторов направлений спуска в соседних точках:

dj (a)/da = -f’(x [k+ 1]f’(x [k ]) = 0.

Рис. 2.9. Геометрическая интерпретация метода наискорейшего спуска

Градиентные методы сходятся к минимуму с высокой скоростью (со скоростью геометрической прогрессии) для гладких выпуклых функций. У таких функций наибольшее М и наименьшее m собственные значения матрицы вторых производных (матрицы Гессе)

мало отличаются друг от друга, т. е. матрица Н(х) хорошо обусловлена. Напомним, что собственными значениями l i , i =1, …, n , матрицы являются корни характеристического уравнения

Однако на практике, как правило, минимизируемые функции имеют плохо обусловленные матрицы вторых производных (т/М << 1). Значения таких функций вдоль некоторых направлений изменяются гораздо быстрее (иногда на несколько порядков), чем в других направлениях. Их поверхности уровня в простейшем случае сильно вытягиваются (Рис. 2.10), а в более сложных случаях изгибаются и представляют собой овраги. Функции, обладающие такими свойствами, называют овражными. Направление антиградиента этих функций (см. Рис. 2.10) существенно отклоняется от направления в точку минимума, что приводит к замедлению скорости сходимости.

Рис. 2.10. Овражная функция

Скорость сходимости градиентных методов существенно зависит также от точности вычислений градиента. Потеря точности, а это обычно происходит в окрестности точек минимума или в овражной ситуации, может вообще нарушить сходимость процесса градиентного спуска. Вследствие перечисленных причин градиентные методы зачастую используются в комбинации с другими, более эффективными методами на начальной стадии решения задачи. В этом случае точка х находится далеко от точки минимума, и шаги в направлении антиградиента позволяют достичь существенного убывания функции.

Рассмотренные выше градиентные методы отыскивают точку минимума функции в общем случае лишь за бесконечное число итераций. Метод сопряженных градиентов формирует направления поиска, в большей мере соответствующие геометрии минимизируемой функции. Это существенно увеличивает скорость их сходимости и позволяет, например, минимизировать квадратичную функцию

f(x) = (х, Нх) + (b, х) + а

с симметрической положительно определенной матрицей Н за конечное число шагов п, равное числу переменных функции. Любая гладкая функция в окрестности точки минимума хорошо аппроксимируется квадратичной, поэтому методы сопряженных градиентов успешно применяют для минимизации и неквадратичных функций. В таком случае они перестают быть конечными и становятся итеративными.

По определению, два n -мерных вектора х и у называют сопряженными по отношению к матрице H (или H -сопряженными), если скалярное произведение (x , Ну) = 0. Здесь Н - симметрическая положительно определенная матрица размером п хп.

Одной из наиболее существенных проблем в методах сопряженных градиентов является проблема эффективного построения направлений. Метод Флетчера-Ривса решает эту проблему путем преобразования на каждом шаге антиградиента -f(x [k ]) в направление p [k ], H -сопряженное с ранее найденными направлениями р , р , ..., р [k -1]. Рассмотрим сначала этот метод применительно к задаче минимизации квадратичной функции.

Направления р [k ] вычисляют по формулам:

p[k ] = -f’(x [k ]) +b k-1 p [k -l], k >= 1;

p = -f (x ) .

Величины b k -1 выбираются так, чтобы направления p [k ], р [k -1] были H -сопряженными:

(p [k ], Hp [k- 1])= 0.

В результате для квадратичной функции

,

итерационный процесс минимизации имеет вид

x[k +l] =x [k ] +a k p [k ],

где р [k ] - направление спуска на k- м шаге; а k - величина шага. Последняя выбирается из условия минимума функции f(х) по а в направлении движения, т. е. в результате решения задачи одномерной минимизации:

f(х[k ] + а k р [k ]) = f(x [k ] + ар [k ]) .

Для квадратичной функции

Алгоритм метода сопряженных градиентов Флетчера-Ривса состоит в следующем.

1. В точке х вычисляется p = -f’(x ) .

2. На k- м шаге по приведенным выше формулам определяются шаг а k . и точка х [k+ 1].

3. Вычисляются величины f(x [k +1]) и f’(x [k +1]) .

4. Если f’(x ) = 0, то точка х [k +1] является точкой минимума функции f(х). В противном случае определяется новое направление p [k +l] из соотношения

и осуществляется переход к следующей итерации. Эта процедура найдет минимум квадратичной функции не более чем за п шагов. При минимизации неквадратичных функций метод Флетчера-Ривса из конечного становится итеративным. В таком случае после (п+ 1)-й итерации процедуры 1-4 циклически повторяются с заменой х на х [п +1] , а вычисления заканчиваются при , где - заданное число. При этом применяют следующую модификацию метода:

x[k +l] = x [k ] +a k p [k ],

p[k ] = -f’(x [k ])+ b k- 1 p [k -l], k >= 1;

p = -f’(x );

f(х[k ] + a k p [k ]) = f(x [k ] + ap [k ];

.

Здесь I - множество индексов: I = {0, n, 2п, Зп, ...} , т. е. обновление метода происходит через каждые п шагов.

Геометрический смысл метода сопряженных градиентов состоит в следующем (Рис. 2.11). Из заданной начальной точки х осуществляется спуск в направлении р = -f"(x ). В точке х определяется вектор-градиент f"(x ). Поскольку х является точкой минимума функции в направлении р , то f’(х ) ортогонален вектору р . Затем отыскивается вектор р , H -сопряженный к р . Далее отыскивается минимум функции вдоль направления р и т. д.

Рис. 2.11. Траектория спуска в методе сопряженных градиентов

Методы сопряженных направлений являются одними из наиболее эффективных для решения задач минимизации. Однако следует отметить, что они чувствительны к ошибкам, возникающим в процессе счета. При большом числе переменных погрешность может настолько возрасти, что процесс придется повторять даже для квадратичной функции, т. е. процесс для нее не всегда укладывается в п шагов.

Рис.3. Геометрическая интерпретация метода наискорейшего спуска. На каждом шаге выбирается так, чтобы следующая итерация была точкой минимума функции на луче L.

Этот вариант градиентного метода основывается на выборе шага из следующего соображения. Из точки будем двигаться в направлении антиградиента до тех пор пока не достигнем минимума функции f на этом направлении, т. е. на луче:

Другими словами, выбирается так, чтобы следующая итерация была точкой минимума функции f на луче L (см. рис. 3). Такой вариант градиентного метода называется методом наискорейшего спуска. Заметим, кстати, что в этом методе направления соседних шагов ортогональны.

Метод наискорейшего спуска требует решения на каждом шаге задачи одномерной оптимизации. Практика показывает, что этот метод часто требует меньшего числа операций, чем градиентный метод с постоянным шагом.

В общей ситуации, тем не менее, теоретическая скорость сходимости метода наискорейшего спуска не выше скорости сходимости градиентного метода с постоянным (оптимальным) шагом.

Числовые примеры

Метод градиентного спуска с постоянным шагом

Для исследования сходимости метода градиентного спуска с постоянным шагом была выбрана функция:

Из полученных результатов можно сделать вывод, что при слишком большом чаге метод расходится, при слишком малом сходится медленно и точчность хуже. Надо выбирать шаг наибольшим из тех, при которых метод сходится.

Градиентный метод с дроблением шага

Для исследования сходимости метода градиентного спуска с дроблением шага (2) была выбрана функция:

Начальное приближение - точка (10,10).

Использован критерий останова:

Результаты эксперимента отражены в таблице:

Значение

параметра

Значение параметра

Значение параметра

Достигнутая точность

Количество итераций

Из полученных результатов можно сделать вывод об оптимальном выборе параметров: , хотя метод не сильно чувствителен к выбору параметров.

Метод наискорейшего спуска

Для исследования сходимости метода наискорейшего спуска была выбрана функция:

Начальное приближение - точка (10,10). Использован критерий останова:

Для решения одномерных задач оптимизации использован метод золотого сечения.

Метод получил точность 6e-8 за 9 итераций.

Отсюда можно сделать вывод, что метод наискорейшего спуска сходится быстрее, чем градиентный метод с дроблением шага и метод градиентного спуска с постоянным шагом.

Недостатком методом наискорейшего спуска является необходимость решать одномерную задачу оптимизации.

При программировании методов градиентного спуска следует аккуратно относится к выбору параметров, а именно

  • · Метод градиентного спуска с постоянным шагом: шаг следует выбирать меньше 0.01, иначе метод расходится (метод может расходится и при таком шаге в зависимости от исследуемой функции).
  • · Градиентный метод с дроблением шага не очень чувствителен к выбору параметров. Один из вариантов выбора параметров:
  • · Метод наискорейшего спуска: в качестве метода одномерной оптимизации можно использовать метод золотого сечения (когда он применим).

Метод сопряжённых градиентов - итерационный метод для безусловной оптимизации в многомерном пространстве. Основным достоинством метода является то, что он решает квадратичную задачу оптимизации за конечное число шагов. Поэтому, сначала описывается метод сопряжённых градиентов для оптимизации квадратичного функционала, выводятся итерационные формулы, приводятся оценки скорости сходимости. После этого показывается, как метод сопряжённых обобщается для оптимизации произвольного функционала, рассматриваются различные варианты метода, обсуждается сходимость.

Постановка задачи оптимизации

Пусть задано множество и на этом множестве определена целевая функция (objective function) . Задача оптимизации состоит в нахождении на множестве точной верхней или точной нижней грани целевой функции. Множество точек, на которых достигается нижняя грань целевой функции обозначается.

Если, то задача оптимизации называется безусловной (unconstrained). Если, то задача оптимизации называется условной (constrained).

Метод сопряжённых градиентов для квадратичного функционала

Изложение метода

Рассмотрим следующую задачу оптимизации:

Здесь - симметричная положительно определённая матрица размера. Такая задача оптимизации называется квадратичной. Заметим, что. Условие экстремума функции эквивалентно системе Функция достигает своей нижней грани в единственной точке, определяемой уравнением. Таким образом, данная задача оптимизации сводится к решению системы линейных уравнений Идея метода сопряжённых градиентов состоит в следующем: Пусть - базис в. Тогда для любой точки вектор раскладывается по базису Таким образом, представимо в виде

Каждое следующее приближение вычисляется по формуле:

Определение. Два вектора и называются сопряжёнными относительно симметричной матрицы B, если

Опишем способ построения базиса в методе сопряжённых градиентов В качестве начального приближения выбираем произвольный вектор. На каждой итерации выбираются по правилу:

Базисные вектора вычисляются по формулам:

Коэффициенты выбираются так, чтобы векторы и были сопряжёнными относительно А.

Если обозначить за, то после нескольких упрощений получим окончательные формулы, используемые при применении метода сопряжённых градиентов на практике:

Для метода сопряжённых градиентов справедлива следующая теорема: Теорема Пусть, где - симметричная положительно определённая матрица размера. Тогда метод сопряжённых градиентов сходится не более чем за шагов и справедливы следующие соотношения:

Сходимость метода

Если все вычисления точные, и исходные данные точны то метод сходится к решению системы не более чем за итераций, где - размерность системы. Более тонкий анализ показывает, что число итераций не превышает, где - число различных собственных значений матрицы A. Для оценки скорости сходимости верна следующая (довольно грубая) оценка:

Она позволяет оценить скорость сходимости, если известны оценки для максимального и минимального собственных значений матрицы На практике чаще всего используют следующий критерий останова:

Вычислительная сложность

На каждой итерации метода выполняется операций. Такое количество операций требуется для вычисления произведения - это самая трудоёмкая процедура на каждой итерации. Отальные вычисления требуют O(n) операций. Суммарная вычислительная сложность метода не превышает - так как число итераций не больше n.

Численный пример

Применим метод сопряжённых градиентов для решения системы, где C помощью метода сопряжённых градиентов решение этой системы получается за две итерации. Собственные числа матрицы - 5, 5, -5 - среди них два различных, поэтому, согласно теоретической оценке число итераций не могло превышать двух

Метод сопряжённых градиентов - один из наиболее эффективных методов решения СЛАУ с положительно определённой матрицей. Метод гарантирует сходимость за конечное число шагов, а нужная точность может быть достигнута значительно раньше. Основная проблема заключается в том, что из-за накопления погрешностей может нарушаться ортогональность базисных веторов, что ухудшает сходимость

Метод сопряжённых градиентов в общем случае

Расссмотрим теперь модификацию метода сопряжённых градиентов для случая, когда минимизируемый функционал не является квадратичным: Будем решать задачу:

Непрерывно дифференцируемая в функция. Чтобы модифицировать метод сопряжённых градиентов для решения этой задачи необходимо получить для формулы, в которые не входит матрица А:

можно вычислять по одной из трёх формул:

1. - Метод Флетчера - Ривса (Fletcher-Reeves method)

  • 2. - Метод Полака - Райбера (Polak-Ribi`ere method)

Если функция - квадратичная и строго выпуклая, то все три формулы дают одинаковый результат. Если - произвольная функция, то каждой из формул cоответствует своя модификация метода сопряжённых градиентов. Третья формула используется редко, так как она требует, чтобы функция и вычисления гессиана функции на каждом шаге метода.

Если функция - не квадратичная, метод сопряжённых градиентов может и не сходиться за конечное число шагов. Кроме того, точное вычисление на каждом шаге возможно только в редких случаях. Поэтому накопление погрешностей приводит к тому, что вектора перестают указывать направление убывания функции. Тогда на каком-то шаге полагают. Совокупность всех номеров, при которых принимается, обозначим за. Номера называются моментами обновления метода. На практике часто выбирают, где - размерность пространства.

Сходимость метода

Для метода Флетчера - Ривса существует теорема о сходимости, накладывающая не слишком жёсткие условия на минимизируемую функцию: Теорема. Пусть и выполняются следующие условия:

Множество ограничено

Производная удовлетворяет условию Липшица с константой в некоторой окрестности

множества M: .

Для метода Полака-Райбера доказана сходимость в предположении, что - строго выпуклая функция. В общем случае доказать сходимость метода Полака - Райбера невозможно. Напоротив, верна следующая теорема: Теорема. Предположим, что в методе Полака-Райбера значения на каждом шаге вычисляются точно. Тогда существует функция, и начальное приближение, такие что.

Тем не менее, на практике метод Полака-Райбера работает лучше. Наиболее распространённые критерии останова на практике: Норма градиента становится меньше некоторого порога Значение функции в течении m последовательных итераций почти не изменилось

Вычислительная сложность

На каждой итерации методов Полака-Райбера или Флетчера-Ривса по одному разу вычисляются функция и её градиент, решается задача одномерной оптимизации. Таким образом, сложность одного шага метода сопряжённых градиентов имеет тот же порядок, что и сложность шага метода скорейшего спуска. На практике метод сопряжённых градиентов показывает лучшую скорость сходимости.

Будем искать методом сопряжённых градиентов минимум функции

Минимум этой фнкции равен 1 и достигается в точке (5, 4). Сравним на примере этой функции методы Полака-Райбера и Флетчера-Ривса. Итерации в обоих методах прекращаются, когда на текущем шаге квадрат нормы градиента становится меньше. Для выбора используется метод золотого сечения

Метод Флетчера - Ривса

Метод Полака - Райбера

Число итераций

Найденное решение

Значение функции

Число итераций

Найденное решение

Значение функции

(5.01382198,3.9697932)

(5.03942877,4.00003512)

(5.01056482,3.99018026)

(4.9915894,3.99999044)

(4.9979991,4.00186173)

(5.00336181,4.0000018)

(4.99898277,4.00094645)

(4.99846808,3.99999918)

(4.99974658,4.0002358)

(4.99955034,3.99999976)

Реализовано два варианта метода сопряжённых градиентов: для минимизации квадратичного функционала, и для минимизации произвольной функции. В первом случае метод реализуется функцией vector FindSolution(matrix A, vector b) Здесь A и b - матрица и вектор, фигурирющие в определении квадратичной задачи оптимизации. Для минимизации произвольного функционала можно использовать одну из двух функций: vector FletcherRievesMethod(int spaceSize, Function F, vector (*GradF) (vector)) vector PolakRibiereMethod(int spaceSize, Function F, vector (*GradF) (vector)) Параметры для обеих функций совпадают и имеют следующий смысл: spaceSize - размерность пространства(число переменных, от которых зависит минимизируемый функционал) F - указатель на минимизируемую функцию. Функция должна иметь вид double <имя функции>(vector) GradF - указатель на функцию, вычисляющую градиент минимизируемого функционала Оба метода используют вспомогательную функцию для решения задачи одномерной оптимизации. В программе реализована одномерная оптимизация методом золотого сечения.

Методы градиентного спуска являются достаточно мощным инструментом решения задач оптимизации. Главным недостатком методов является ограниченная область применимости. В методе сопряжённых градиентов используется информация только о линейной части приращения в точке, как и в методах градиентного спуска. При этом метод сопряжённых градиентов позволяет решать квадратичные задачи за конечное число шагов. На многих других задачах метод сопряжённого градиента также превосходит метод градиентного спуска. Сходимость метода градиентов существенно зависит от того, насколько точно решается задача одномерной оптимизации. Возможные зацикливания метода устраняются с помощью обновлений. Тем не менее, если метод попадёт в локальный минимум функции, скорее всего, ему не удастся из него выбраться.

Метод наискорейшего спуска является градиентным методом с переменным шагом. На каждой итерации величина шага k выбирается из условия минимума функции f(x) в направлении спуска, т.е.

Это условие означает, что движение вдоль антиградиента происходит до тех пор, пока значение функции f (x) убывает. С математической точки зрения на каждой итерации необходимо решать задачу одномерной минимизации по функции

()=f (x (k) -f (x (k)))

Воспользуемся для этого методом золотого сечения.

Алгоритм метода наискорейшего спуска состоит в следующем.

    Задаются координаты начальной точки x (0) .

    В точке x (k) , k = 0, 1, 2, …, вычисляется значение градиентаf (x (k)).

    Определяется величина шага k путем одномерной минимизации по функции

()=f (x (k) -f (x (k))).

    Определяются координаты точки x (k) :

x i (k+1) = x i (k) - k f i (x (k)), i=1, …, n.

    Проверяется условие останова итерационного процесса:

||f (x (k +1))|| .

Если оно выполняется, то вычисления прекращаются. В противном случае осуществляется переход к п. 1. Геометрическая интерпретация метода наискорейшего спуска представлена на рис. 1.

Рис. 2.1. Блок схема метода наискорейшего спуска.

Реализация метода в программе:

Метод наискорейшего спуска.

Рис. 2.2. Реализация метода наискорейшего спуска.

Вывод: В нашем случае метод сошёлся за 7 итераций. Точка А7 (0,6641; -1,3313) является точкой экстремума. Метод сопряженных направлений. Для квадратичных функций можно создать градиентный метод, при котором время сходимости будет конечным и равно числу переменных n.

Назовем некоторое направление исопряженными по отношению к некоторой положительно определенной матрице ГессаH, если выполняется:

Тогда т.е.. Значит при единичнойH, сопряженное направление означает их перпендикуляр. В общем же случае H неединичная. В общем случае сопряженность - это применение матрицы Гесса к вектору - означает поворот этого вектора на некоторый уголи его растяжение или сжатие.

А теперь вектору векторортогонален т. е. сопряженность это не ортогональность векторови, а ортогональность повернутого векторат.е.и.

Рис. 2.3. Блок-схема метода сопряженных направлений.

Реализация метода в программе: Метод сопряженных направлений.

Рис. 2.4. Реализация метода сопряженных направлений.

Рис. 2.5. График метода сопряженных направлений.

Вывод: Точка А3 (0,6666; -1,3333), была найдена за 3 итерации и является точкой экстремума.

3. Анализ методов определения минимального, максимального значения функции при наличии ограничений

Напомним, что общая задача условной оптимизациивыглядит так

f(x) ® min, x Î W,

где W - собственное подмножество R m . Подкласс задач с ограничениями типа равенств выделяется тем, что множество  задается ограничениями вида

f i (x) = 0, где f i: R m ®R (i = 1, …, k).

Таким образом,W = {x Î R m: f i (x) = 0, i = 1, …, k}.

Нам будет удобно писать у функции f индекс "0". Таким образом, задача оптимизации с ограничениями типа равенств записывается в виде

f 0 (x) ® min, (3.1)

f i (x) = 0, i = 1, …, k. (3.2)

Если обозначить теперь через f функцию на R m со значениями в R k , координатная запись которой имеет вид f(x) = (f 1 (x), …, f k (x)), то (3.1)–(3.2)можно также записать в виде

f 0 (x) ® min, f(x) = Q.

Геометрически задача с ограничениями типа равенств - это задача о поиске наинизшей точки графика функции f 0 над многообразием  (см. рис. 3.1).

Точки, удовлетворяющие всем ограничениям (т. е. точки множества ), обычно называют допустимыми. Допустимая точка x* называется условным минимумом функции f 0 при ограничениях f i (x) = 0, i = 1, ..., k (или решением задачи (3.1)–(3.2)), если при всех допустимых точкахx f 0 (x*)  f 0 (x). (3.3)

Если (3.3)выполняется только для допустимыхx, лежащих в некоторой окрестности V x * точки x*, то говорят о локальном условном минимуме. Естественным образом определяются понятия условных строгих локального и глобального минимумов.