Все про черную дыру в космосе. Черные дыры - интересные факты

Черные дыры являются одними из самых удивительных и в то же время пугающих объектов нашей Вселенной. Возникают они в тот момент, когда в звездах, имеющих огромную массу, заканчивается ядерное топливо. Ядерные реакции прекращаются и светила начинают остывать. Тело звезды сжимается под действием гравитации и постепенно она начинает притягивать к себе более мелкие объекты, трансформируясь в черную дыру.

Первые исследования

Изучать черные дыры светила науки начали не так давно, несмотря на то что основные концепции их существования были разработаны еще в прошлом столетии. Само понятие «черной дыры» было введено в 1967 году Дж. Уиллером, хотя вывод о том, что эти объекты неизбежно возникают при коллапсе массивных звезд, был сделан еще в 30-х годах прошлого столетия. Все, что внутри черной дыры - астероиды, свет, поглощенные ею кометы, - когда-то приблизилось слишком близко к границам этого загадочного объекта и не сумело их покинуть.

Границы черных дыр

Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.

Строение черных дыр

Горизонтом событий называется неприступная граница черной дыры. Внутри этой границы находится зона, которую не могут покинуть даже объекты, скорость движения которых равна скорости света. Даже кванты самого света не могут покинуть горизонт событий. Находясь в этой точке, никакой предмет уже не может вырваться из черной дыры. О том, что внутри черной дыры, мы не можем узнать по определению - ведь в ее глубинах находится так называемая точка сингулярности, которая формируется за счет предельного сжатия вещества. Когда объект попадает внутрь горизонта событий, с этого момента он никогда не сможет вырваться снова из нее и стать видимым для наблюдателей. С другой стороны, те, кто находятся внутри черных дыр, не могут видеть ничего из происходящего снаружи.

Размер горизонта событий, окружающего этот загадочный космический объект, всегда прямо пропорционален массе самой дыры. Если ее масса будет удвоена, то вдвое больше станет и внешняя граница. Если бы ученые смогли найти способ, позволяющий превратить Землю в черную дыру, то размер горизонта событий составлял бы всего лишь 2 см в поперечном разрезе.

Основные категории

Как правило, масса среднестатистических черных дыр приблизительно равна трем солнечным массам и более. Из двух видов черных дыр выделяют звездные, а также сверхмассивные. Их масса превосходит массу Солнца в несколько сотен тысяч раз. Звездные образуются после смерти больших небесных светил. Черные дыры обычной массы появляются после завершения жизненного цикла больших звезд. Оба вида черных дыр, несмотря на различное происхождение, имеют сходные свойства. Сверхмассивные черные дыры расположены в центрах галактик. Ученые предполагают, что они сформировались во времена образования галактик за счет слияния плотно прилежащих друг к другу звезд. Однако это только догадки, не подтвержденные фактами.

Что внутри черной дыры: догадки

Некоторые из математиков считают, что внутри этих загадочных объектов Вселенной находятся так называемые червоточины - переходы в другие Вселенные. Иными словами, в точке сингулярности расположен пространственно-временной туннель. Эта концепция послужила для многих писателей и режиссеров. Однако подавляющее большинство астрономов считают, что никаких туннелей между Вселенными не существует. Однако даже если бы они действительно были, у человека нет никаких способов узнать, что находится внутри черной дыры.

Существует и другая концепция, согласно которой в противоположном конце такого туннеля находится белая дыра, откуда из нашей Вселенной в другой мир через черные дыры поступает гигантское количество энергии. Однако на данном этапе развития науки и техники о путешествиях подобного рода не может быть и речи.

Связь с теорией относительности

Черные дыры являются одним из самых удивительных предсказаний А. Эйнштейна. Известно, что сила тяготения, которая создается на поверхности любой планеты, обратно пропорциональна квадрату ее радиуса и прямо пропорциональна ее массе. Для этого небесного тела можно определить понятие второй космической скорости, которая необходима, чтобы преодолеть эту силу тяготения. Для Земли она равна 11 км/сек. Если же масса небесного тела будет увеличиваться, а диаметр - наоборот, уменьшаться, то вторая космическая скорость со временем может превысить скорость света. И поскольку, согласно теории относительности, никакой объект не может двигаться быстрее скорости света, то образуется объект, не дающий ничему вырваться за его пределы.

В 1963 году учеными были обнаружены квазары - космические объекты, являющиеся гигантскими источниками радиоизлучения. Располагаются они очень далеко от нашей галактики - их удаленность составляет миллиарды световых лет от Земли. Чтобы объяснить чрезвычайно высокую активность квазаров, ученые ввели гипотезу о том, что внутри них располагаются черные дыры. Эта точка зрения сейчас является общепринятой в научных кругах. Исследования, которые проводились в течение последних 50 лет, не только подтвердили данную гипотезу, но и привели ученых к выводу о том, что черные дыры есть в центре каждой галактики. В центре нашей галактики также есть такой объект, его масса составляет 4 миллиона солнечных масс. Эта черная дыра носит название «Стрелец А», и поскольку она расположена ближе всего к нам, ее больше всего исследуют астрономы.

Излучение Хокинга

Этот тип излучения, открытый известным физиком Стивеном Хокингом, значительно усложняет жизнь современным ученым - ведь из-за этого открытия в теории черных дыр появилось немало трудностей. В классической физике существует понятие вакуума. Этим словом обозначается полная пустота и отсутствие материи. Однако с развитием квантовой физики понятие вакуума было видоизменено. Ученые выяснили, что он заполнен так называемыми виртуальными частицами - под воздействием сильного поля они могут превратиться в реальные. В 1974 году Хокинг выяснил, что подобные превращения могут происходить в сильном гравитационном поле черной дыры - возле ее внешней границы, горизонта событий. Такое рождение является парным - появляется частица и античастица. Как правило, античастица обречена на падение в черную дыру, а частица улетает. В результате ученые наблюдают некоторое излучение вокруг этих космических объектов. Оно и получило название излучения Хокинга.

В ходе этого излучения то вещество, что внутри черной дыры, медленно испаряется. Дыра теряет массу, при этом интенсивность излучения обратно пропорциональна величине квадрата ее массы. Интенсивность излучения Хокинга ничтожно мала по космическим меркам. Если предположить, что существует дыра массой в 10 солнц, и на нее не попадает ни свет, ни какие-либо материальные объекты, то даже в этом случае время ее распада будет чудовищно велико. Жизнь такой дыры будет превосходить все время существования нашей Вселенной на 65 порядков.

Вопрос о сохранении информации

Одной из основных проблем, которая появилась после открытия излучения Хокинга, является проблема потери информации. Связана она с вопросом, кажущимся на первый взгляд очень простым: что произойдет, когда черная дыра испарится полностью? Обе теории - как квантовая физика, так и классическая - имеют дело с описанием состояния системы. Обладая информацией о начальном состоянии системы, при помощи теории можно описать, каким образом она будет меняться.

При этом в процессе эволюции информация о начальном состоянии не теряется - действует своего рода закон о сохранении информации. Но если черная дыра испарится полностью, то наблюдатель теряет информацию о той части физического мира, который когда-то попал в дыру. Стивен Хокинг считал, что информация о начальном состоянии системы каким-то образом восстанавливается после того, как черная дыра испарилась полностью. Но трудность состоит в том, что по определению из черной дыры передача информации невозможна - ничто не может покинуть горизонт событий.

Что будет, если попадешь в черную дыру?

Считается, что если бы каким-либо невероятным способом человек мог попасть на поверхность черной дыры, то она сразу стала бы его затягивать в направлении себя. В конечном счете человек бы растянулся настолько, что превратился бы в поток субатомных частиц, движущихся по направлению к точке сингулярности. Доказать эту гипотезу, конечо же, невозможно, ведь ученые вряд ли когда-нибудь смогут узнать, что происходит внутри черных дыр. Сейчас некоторые физики заявляют, что если бы человек попал в черную дыру, то у него появился бы клон. Первая из его версий сразу же была бы уничтожена потоком раскаленных частиц излучения Хокинга, а вторая бы прошла через горизонт событий без возможности вернуться назад.

Правообладатель иллюстрации Thinkstock

Возможно, вы думаете, что человека, попавшего в черную дыру, ждет мгновенная смерть. В действительности же его судьба может оказаться намного более удивительной, рассказывает корреспондент .

Что произойдет с вами, если вы попадете внутрь черной дыры? Может быть, вы думаете, что вас раздавит - или, наоборот, разорвет на клочки? Но в действительности все гораздо страннее.

В тот момент, когда вы попадете в черную дыру, реальность разделится надвое. В одной реальности вас мгновенно испепелит, в другой же - вы нырнете вглубь черной дыры живым и невредимым.

Внутри черной дыры не действуют привычные нам законы физики. Согласно Альберту Эйнштейну, гравитация искривляет пространство. Таким образом, при наличии объекта достаточной плотности пространственно-временной континуум вокруг него может деформироваться настолько, что в самой реальности образуется прореха.

Массивная звезда, израсходовавшая все топливо, может превратиться именно в тот тип сверхплотной материи, который необходим для возникновения подобного искривленного участка Вселенной. Звезда, схлопывающаяся под собственной тяжестью, увлекает за собой пространственно-временной континуум вокруг нее. Гравитационное поле становится настолько сильным, что даже свет больше не может из него вырваться. В результате область, в которой ранее находилась звезда, становится абсолютно черной - это и есть черная дыра.

Правообладатель иллюстрации Thinkstock Image caption Никто точно не знает, что происходит внутри черной дыры

Внешняя поверхность черной дыры называется горизонтом событий. Это сферическая граница, на которой достигается баланс между силой гравитационного поля и усилиями света, пытающегося покинуть черную дыру. Если пересечь горизонт событий, вырваться будет уже невозможно.

Горизонт событий лучится энергией. Благодаря квантовым эффектам, на нем возникают потоки горячих частиц, излучаемых во Вселенную. Это явление называется излучением Хокинга - в честь описавшего его британского физика-теоретика Стивена Хокинга. Несмотря на то, что материя не может вырваться за пределы горизонта событий, черная дыра, тем не менее, "испаряется" - со временем она окончательно потеряет свою массу и исчезнет.

По мере продвижения вглубь черной дыры пространство-время продолжает искривляться и в центре становится бесконечно искривленным. Эта точка известна как гравитационная сингулярность. Пространство и время в ней перестают иметь какое-либо значение, а все известные нам законы физики, для описания которых необходимы эти два понятия, больше не действуют.

Никто не знает, что именно ждет человека, попавшего в центр черной дыры. Иная вселенная? Забвение? Задняя стенка книжного шкафа, как в американском научно-фантастическом фильме "Интерстеллар"? Это загадка.

Давайте порассуждаем - на вашем примере - о том, что произойдет, если случайно попасть в черную дыру. Компанию в этом эксперименте вам составит внешний наблюдатель - назовем его Анной. Итак, Анна, находящаяся на безопасном расстоянии, в ужасе наблюдает за тем, как вы приближаетесь к границе черной дыры. С ее точки зрения события будут развиваться весьма странным образом.

По мере вашего приближения к горизонту событий Анна будет видеть, как вы вытягиваетесь в длину и сужаетесь в ширину, будто она рассматривает вас в гигантскую лупу. Кроме того, чем ближе вы будете подлетать к горизонту событий, тем больше Анне будет казаться, что ваша скорость падает.

Правообладатель иллюстрации Thinkstock Image caption В центре черной дыры пространство бесконечно искривлено

Вы не сможете докричаться до Анны (поскольку в безвоздушном пространстве звук не передается), но можете попытаться подать ей знак азбукой Морзе при помощи фонарика в вашем iPhone. Однако ваши сигналы будут достигать ее со все возрастающими интервалами, а частота света, испускаемого фонариком, будет смещаться в сторону красного (длинноволнового) участка спектра. Вот как это будет выглядеть: "Порядок, п о р я д о к, п о р я…".

Когда вы достигнете горизонта событий, то, с точки зрения Анны, замрете на месте, как если бы кто-то поставил воспроизведение на паузу. Вы останетесь в неподвижности, растянутым по поверхности горизонта событий, и вас начнет охватывать все возрастающий жар.

С точки зрения Анны, вас будут медленно убивать растяжение пространства, остановка времени и жар излучения Хокинга. Прежде чем вы пересечете горизонт событий и углубитесь в недра черной дыры, от вас останется один пепел.

Но не спешите заказывать панихиду - давайте на время забудем об Анне и посмотрим на эту ужасную сцену с вашей точки зрения. А с вашей точки зрения будет происходить нечто еще более странное, то есть ровным счетом ничего особенного.

Вы летите прямиком в одну из самых зловещих точек Вселенной, не испытывая при этом ни малейшей тряски - не говоря уже о растяжении пространства, замедлении времени или жаре излучения. Все потому, что вы находитесь в состоянии свободного падения и поэтому не чувствуете своего веса - именно это Эйнштейн назвал "самой удачной идеей" своей жизни.

Действительно, горизонт событий - это не кирпичная стена в космосе, а явление, обусловленное точкой зрения наблюдающего. Наблюдатель, остающийся снаружи черной дыры, не может заглянуть внутрь сквозь горизонт событий, но это его проблема, а не ваша. С вашей точки зрения никакого горизонта не существует.

Если бы размеры нашей черной дыры были меньше, вы и правда столкнулись бы с проблемой - гравитация действовала бы на ваше тело неравномерно, и вас вытянуло бы в макаронину. Но, по счастью для вас, данная черная дыра велика - она в миллионы раз массивнее Солнца, так что гравитационная сила достаточно слаба, чтобы можно было ею пренебречь.

Правообладатель иллюстрации Thinkstock Image caption Вы не можете вернуться и выбраться из черной дыры - точно так же, как никто из нас не способен на путешествие в прошлое

Внутри достаточно крупной черной дыры вы даже сможете вполне нормально прожить остаток жизни, пока не умрете в гравитационной сингулярности.

Вы можете спросить, насколько нормальной может быть жизнь человека, помимо воли увлекаемого к дыре в пространственно-временном континууме без шанса на то, чтобы когда-нибудь выбраться наружу?

Но если вдуматься, нам всем знакомо это ощущение - только применительно ко времени, а не к пространству. Время идет только вперед и никогда вспять, и оно действительно влечет нас за собою помимо нашей воли, не оставляя нам шанса на возвращение в прошлое.

Это не просто аналогия. Черные дыры искривляют пространственно-временной континуум до такой степени, что внутри горизонта событий время и пространство меняются местами. В каком-то смысле вас влечет к сингулярности не пространство, а время. Вы не можете вернуться назад и выбраться из черной дыры - точно так же, как никто из нас не способен на путешествие в прошлое.

Возможно, теперь вы задаетесь вопросом, что же не так с Анной. Вы летите себе в пустом пространстве черной дыры и с вами все в порядке, а она оплакивает вашу гибель, утверждая, что вас испепелило излучение Хокинга с внешней стороны горизонта событий. Уж не галлюцинирует ли она?

В действительности утверждение Анны совершенно справедливо. С ее точки зрения, вас действительно поджарило на горизонте событий. И это не иллюзия. Анна может даже собрать ваш пепел и отослать его вашим родным.

Правообладатель иллюстрации Thinkstock Image caption Горизонт событий - не кирпичная стена, он проницаем

Дело в том, что, в соответствии с законами квантовой физики, с точки зрения Анны вы не можете пересечь горизонт событий и должны остаться с внешней стороны черной дыры, поскольку информация никогда не теряется безвозвратно. Каждый бит информации, отвечающий за ваше существование, обязан оставаться на внешней поверхности горизонта событий - иначе с точки зрения Анны, будут нарушены законы физики.

С другой стороны, законы физики также требуют, чтобы вы пролетели сквозь горизонт событий живыми и невредимыми, не повстречав на своем пути ни горячих частиц, ни каких-либо иных необычных явлений. В противном случае будет нарушена общая теория относительности.

Итак, законы физики хотят, чтобы вы одновременно находились снаружи черной дыры (в виде горстки пепла) и внутри нее (в целости и сохранности). И еще один немаловажный момент: согласно общим принципам квантовой механики, информацию нельзя клонировать. Вам нужно находиться в двух местах одновременно, но при этом лишь в одном экземпляре.

Такое парадоксальное явление физики называют термином "исчезновение информации в черной дыре". По счастью, в 1990-х гг. ученым удалось этот парадокс разрешить.

Американский физик Леонард Зюсскинд понял, что никакого парадокса на самом деле нет, поскольку никто не увидит вашего клонирования. Анна будет наблюдать за одним вашим экземпляром, а вы - за другим. Вы с Анной никогда больше не встретитесь и не сможете сравнить наблюдения. А третьего наблюдателя, который мог бы наблюдать за вами как снаружи, так и изнутри черной дыры одновременно, не существует. Таким образом, законы физики не нарушаются.

Разве что вы захотите узнать, какой из ваших экземпляров реален, а какой нет. Живы вы в действительности или умерли?

Правообладатель иллюстрации Thinkstock Image caption Пролетит ли человек сквозь горизонт событий целым и невредимым или врежется в огненную стену?

Дело в том, что никакого "в действительности" нет. Реальность зависит от наблюдателя. Существует "в действительности" с точки зрения Анны и "в действительности" с вашей точки зрения. Вот и всё.

Почти всё. Летом 2012 г. физики Ахмед Альмхеири, Дональд Маролф, Джо Полчински и Джеймс Салли, коллективно известные под английской аббревиатурой из первых букв своих фамилий как AMPS, предложили мысленный эксперимент, который грозил перевернуть наше представление о черных дырах.

По словам ученых, разрешение противоречия, предложенное Зюсскиндом, основывается на том, что разногласие в оценке происходящего между вами и Анной опосредовано горизонтом событий. Неважно, действительно ли Анна видела, как один из двух ваших экземпляров погиб в огне излучения Хокинга, поскольку горизонт событий не давал ей увидеть ваш второй экземпляр, улетающей вглубь черной дыры.

Но что, если бы у Анны имелся способ узнать, что происходит по ту сторону горизонта событий, не пересекая его?

Общая теория относительности говорит нам, что это невозможно, но квантовая механика слегка размывает жесткие правила. Анна могла бы одним глазком заглянуть за горизонт событий при помощи того, что Эйнштейн называл "жутким дальнодействием".

Речь идет о квантовой запутанности - явлении, при котором квантовые состояния двух или более частиц, разделенных пространством, загадочным образом оказываются взаимозависимыми. Эти частицы теперь формируют единое и неделимое целое, а информация, необходимая для описания этого целого, заключена не в той или иной частице, а во взаимосвязи между ними.

Идея, выдвинутая AMPS, звучит следующим образом. Предположим, Анна берет частицу поблизости от горизонта событий - назовем ее частицей A.

Если ее версия произошедшего с вами соответствует действительности, то есть вас убило излучение Хокинга с внешней стороны черной дыры, значит, частица A должна быть взаимосвязана с другой частицей - B, которая также должна находиться с внешней стороны горизонта событий.

Правообладатель иллюстрации Thinkstock Image caption Черные дыры могут притягивать к себе материю близлежащих звезд

Если действительности соответствует ваше видение событий, и вы живы-здоровы с внутренней стороны, тогда частица A должна быть взаимосвязана с частицей C, находящейся где-то внутри черной дыры.

Прелесть этой теории заключается в том, что каждая из частиц может быть взаимосвязана только с одной другой частицей. Это значит, что частица A связана или с частицей B, или с частицей C, но не с обеими одновременно.

Итак, Анна берет свою частицу A и пропускает ее через имеющуюся у нее машинку для расшифровки запутанности, которая дает ответ - связана ли эта частица с частицей B или с частицей C.

Если ответ - C, ваша точка зрения восторжествовала в нарушение законов квантовой механики. Если частица A связана с частицей C, находящейся в недрах черной дыры, то информация, описывающая их взаимозависимость, оказывается навсегда утерянной для Анны, что противоречит квантовому закону, согласно которому информация никогда не теряется.

Если же ответ - B, то, вопреки принципам общей теории относительности, права Анна. Если частица A связана с частицей B, вас действительно испепелило излучение Хокинга. Вместо того, чтобы пролететь сквозь горизонт событий, как того требует теория относительности, вы врезались в стену огня.

Итак, мы вернулись к вопросу, с которого начинали - что произойдет с человеком, попавшим внутрь черной дыры? Пролетит ли он сквозь горизонт событий целым и невредимым благодаря реальности, которая удивительным образом зависит от наблюдателя, или врежется в огненную стену (black holes firewall , не путать с компьютерным термином firewall , "брандмауэр", программным обеспечением, защищающим ваш компьютер в сети от несанкционированного вторжения – Ред .)?

Никто не знает ответа на этот вопрос, один из самых спорных вопросов теоретической физики.

Уже свыше 100 лет ученые пытаются примирить принципы общей теории относительности и квантовой физики в надежде на то, что в конце концов та или другая возобладает. Разрешение парадокса "огненной стены" должно ответить на вопрос, какие из принципов взяли верх, и помочь физикам создать всеобъемлющую теорию.

Правообладатель иллюстрации Thinkstock Image caption А может, в следующий раз отправить в черную дыру Анну?

Решение парадокса исчезновения информации может крыться в дешифровальной машинке Анны. Определить, с какой именно другой частицей взаимосвязана частица A, чрезвычайно трудно. Физики Дэниэл Харлоу из Принстонского университета в Нью-Джерси и Патрик Хайден, который сейчас работает в калифорнийском Стэнфордском университете в Калифорнии, задались вопросом, сколько на это потребуется времени.

В 2013 г. они подсчитали, что даже при помощи наибыстрейшего компьютера, который возможно создать в соответствии с физическими законами, Анне потребовалось бы чрезвычайно много времени на то, чтобы расшифровать взаимосвязь между частицами - настолько много, что к тому моменту, как она получит ответ, черная дыра давным-давно испарится.

Если это так, вероятно, Анне просто не суждено когда-либо узнать, чья точка зрения соответствует действительности. В этом случае обе истории останутся одновременно правдивыми, реальность - зависящей от наблюдателя, и ни один из законов физики не будет нарушен.

Кроме того, связь между сверхсложными вычислениями (на которые наш наблюдатель, по всей видимости, не способен) и пространственно-временным континуумом может натолкнуть физиков на какие-то новые теоретические размышления.

Таким образом, черные дыры - не просто опасные объекты на пути межзвездных экспедиций, но и теоретические лаборатории, в которых малейшие вариации в физических законах вырастают до таких размеров, что ими уже невозможно пренебречь.

Если где-то и таится истинная природа реальности, искать ее лучше всего в черных дырах. Но пока у нас нет четкого понимания того, насколько безопасен для человека горизонт событий, наблюдать за поисками безопаснее все же снаружи. В крайнем случае можно в следующий раз отправить в черную дыру Анну - теперь ее очередь.

Несмотря на огромные достижения в области физики и астрономии, есть немало явлений, суть которых до конца не раскрыта. К таким явлениям принадлежат загадочные черные дыры, вся информация о которых носит лишь теоретический характер и не может быть проверена практическим путем.

Существуют ли черные дыры?

Еще до появления теории относительности астрономами была высказана теория о существовании черных воронок. После публикации теории Эйнштейна был пересмотрен вопрос гравитации и в проблеме черных дыр появились новые предположения. Увидеть этот космический объект нереально, ведь он поглощает весь свет, попадающий в его пространство. Ученые доказывают наличие черных дыр, опираясь на анализ движения межзвездного газа и траектории передвижений звезд.

Образование черных дыр ведет к изменению вокруг них пространственно-временных характеристик. Время будто сжимается под влиянием огромной гравитации и замедляется. Звезды, оказавшиеся на пути черной воронки, могут уклоняться от своего маршрута и даже менять направление движения. Черные дыры поглощают энергию своей звезды-двойника, чем также проявляют себя.

Как выглядит черная дыра?

Информация, касающаяся черных дыр, по большей части носит гипотетический характер. Ученые изучают их по их воздействию на пространство и излучению. Увидеть черные дыры во вселенной не представляется возможным, ведь они поглощают весь свет, попадающий в близлежащее пространство. Со специальных спутников было сделано рентгеновское изображение черных объектов, на котором виден яркий центр, являющийся источником излучения лучей.

Как образуются черные дыры?

Черная дыра в космосе является отдельным миром, который имеет свои уникальные характеристики и свойства. Свойства космических дыр обусловлены причинами их появления. Относительно появления черных объектов существуют такие теории:

  1. Они являются результатом коллапсов, происходящих в космосе. Это может быть столкновение крупных космических тел или взрыв сверхновых звезд.
  2. Они возникают вследствие утяжеления космических объектов при сохранении их размеров. Причина такого явления не определена.

Черная воронка – это объект в космосе, имеющий относительно небольшой размер при огромной массе. Теория черной дыры говорит, что каждый космический объект потенциально может стать черной воронкой, если в результате каких-то явлений он будет терять свои размеры, но сохранять массу. Ученые даже говорят о существовании множества черных микродыр – миниатюрных космических объектах с относительно большой массой. Такое несоответствие массы и размера приводит к усилению гравитационного поля и появлению сильного притяжения.

Что находится в черной дыре?

Черный таинственный объект можно назвать дырой лишь с большой натяжкой. Центром этого явления является космическое тело, имеющее повышенную гравитацию. Результатом такой гравитации становится сильное притяжение к поверхности этого космического тела. При этом образуется вихревой поток, в котором вращаются газы и крупицы космической пыли. Поэтому черную дыру правильнее называть черной воронкой.

Узнать на практике, что внутри черной дыры, невозможно, потому что уровень гравитации космической воронки не позволяет никакому объекту вырваться из зоны ее влияния. По мнению ученых, внутри черной дыры полная темнота, ведь кванты света исчезают в ней безвозвратно. Предполагается, что внутри черной воронки искажается пространство и время, законы физики и геометрии в этом месте не действуют. Такие особенности черных дыр предположительно могут приводить к образованию антивеществ, которые на данный момент не знакомы ученым.

Чем опасны черные дыры?

Иногда черные дыры описываются как объекты, поглощающие окружающие предметы, излучения и частицы. Такое представление неверно: свойства черной дыры позволяют ей впитывать лишь то, что попадает в зону ее влияния. Она может втягивать в себя космические микрочастицы и излучение, исходящее от звезд-двойников. Даже если планета находится вблизи черной дыры, она не будет поглощена, а продолжит двигаться по своей орбите.

Что будет, если попасть в черную дыру?

Свойства черных дыр зависят от силы гравитационного поля. Черные воронки притягивают к себе все, что попадает в зону их влияния. При этом изменяются пространственно-временные характеристики. Ученые, изучающие все о черных дырах, расходятся во мнении относительного того, что происходит с предметами в этой воронке:

  • одни ученые предполагают, что все предметы, попадающие в эти дыры, растягиваются или разрываются на куски и не успевают достичь поверхности притягивающего объекта;
  • другие же ученые утверждают, что в дырах искривляются все привычные характеристики, поэтому предметы там как бы исчезают во времени и пространстве. По этой причине черные дыры иногда называют воротами в иные миры.

Виды черных дыр

Черные воронки делятся по видам, исходя из способа их образования:

  1. Черные объекты звездных масс зарождаются в конце жизни некоторых звезд. Полное сгорание звезды и окончание термоядерных реакций приводит к сжатию звезды. Если же при этом звезда претерпит гравитационный коллапс, то сможет трансформироваться в черную воронку.
  2. Сверхмассивные черные воронки . Ученые утверждают, что сердцевиной любой галактики является сверхмассивная воронка, образование которой является началом появления новой галактики.
  3. Первичные черные дыры . Сюда могут относиться дыры различной массы, включая микродыры, образовавшиеся из-за расхождений в плотности материи и силе гравитации. Такие дыры – это воронки, образовавшиеся в начале зарождения Вселенной. Сюда же относятся такие объекты, как волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.
  4. Квантовые черные дыры . Появляются как результат ядерных реакций и живут непродолжительное время. Квантовые воронки представляют наибольший интерес, так как их изучение может помочь ответить на вопросы по проблеме черных космических объектов.
  5. Некоторые ученые выделяют такой вид космических объектов, волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.

Ближайшая черная дыра к Земле

Ближайшая черная дыра удалена от Земли на 3000 световых лет. Она называется V616 Monocerotis, или V616 Mon. Ее вес достигает 9-13 масс Солнца. Бинарный партнер этой дыры – звезда в полмассы Солнца. Еще одна относительно близкая к Земле воронка - Cygnus X-1. Она располагается от Земли в 6 тысячах световых лет и весит в 15 раз больше Солнца. Эта черная космическая дыра тоже имеет своего бинарного партнера, движение которого и помогает отследить влияние Cygnus X-1.

Черные дыры - интересные факты

Ученые рассказывают о черных объектах такие интересные факты:

  1. Если брать в расчет, что эти объекты являются центром галактик, то для поиска самой большой воронки следует обнаружить самую крупную галактику. Поэтому самая большая черная дыра во вселенной – воронка, находящаяся в галактике IC 1101 в центре скопления Abell 2029.
  2. Черные объекты на самом деле выглядят как разноцветные. Причина этого кроется в их радиомагнитном излучении.
  3. В середине черной дыры нет постоянных физических или математических законов. Все зависит от массы дыры и ее гравитационного поля.
  4. Черные воронки постепенно испаряются.
  5. Вес черных воронок может доходить до неимоверных размеров. Масса наибольшей черной дыры равняется 30 миллионам масс Солнца.
>

Рассмотрите загадочные и невидимые черные дыры во Вселенной: интересные факты, исследование Эйнштейна, сверхмассивные и промежуточные типы, теория, строение.

– одни из наиболее интересных и таинственных объектов в космическом пространстве. Обладают высокой плотностью, а гравитационная сила настолько мощная, что даже свету не удается вырваться за ее пределы.

Впервые о черных дырах заговорил Альберт Эйнштейн в 1916 году, когда создал общую теорию относительности. Сам термин возник в 1967 году благодаря Джону Уилеру. А первую черную дыру «заметили» в 1971 году.

Классификация черных дыр включает три типа: черные дыры звездной массы, сверхмассивные и черные дыры средней массы. Обязательно посмотрите видео про черные дыры, чтобы узнать много интересных фактов и познакомиться с этими загадочными космическими формированиями поближе.

Интересные факты о черных дырах

  • Если вы оказались внутри черной дыры, то гравитация будет вас растягивать. Но бояться не нужно, ведь вы умрете еще до того, как достигнете сингулярности. Исследования 2012 года предположили, что квантовые эффекты превращают горизонт событий в огненную стену, сделавшую из вас кучку пепла.
  • Черные дыры не «всасывают». Этот процесс вызывается вакуумом, которого нет в этом образовании. Так что материал просто падает.
  • Первой черной дырой стал Лебедь Х-1, найденный ракетами со счетчиками Гейгера. В 1971 году ученые получили сигнал радиоизлучения от Лебедя Х-1. Этот объект стал предметом спора между Кипом Торном и Стивеном Хокингом. Последний считал, что это не черная дыра. В 1990 году он признал свое поражение.
  • Крошечные черные дыры могли появиться сразу после Большого Взрыва. Стремительно вращающееся пространство сжимало некоторые области в плотные дыры, с меньшей массивностью, чем у Солнца.
  • Если звезда подойдет слишком близко, то ее может разорвать.
  • По общим подсчетам, существует примерно до миллиарда звездных черных дыр с массой втрое больше солнечной.
  • Если сравнивать теорию струн и классическую механику, то первая порождает больше разновидностей массивных гигантов.

Опасность черных дыр

Когда у звезды заканчивается топливо, она может запустить процесс саморазрушения. Если ее масса была втрое больше солнечной, то оставшееся ядро станет нейтронной звездой или белым карликом. Но более крупная звезда трансформируется в черную дыру.

Такие объекты маленькие, но обладают невероятной плотностью. Представьте, что перед вами объект, размером в город, но его масса в три раза больше солнечной. Это создает невероятно огромную гравитационную силу, которая притягивает пыль и газ, увеличивая ее размеры. Вы удивитесь, но в может располагаться несколько сотен миллионов звездных черных дыр.

Сверхмассивные черные дыры

Конечно, ничто во Вселенной не сравнится с устрашающими сверхмассивными черными дырами. Они превосходят солнечную массу в миллиарды раз. Полагают, что такие объекты есть практически в каждой галактике. Ученые пока не знают всех тонкостей процесса формирования. Скорее всего, они вырастают за счет накапливания массы из окружающего пыли и газа.

Возможно, они обязаны своим масштабам слиянию тысячи небольших черных дыр. Или же могло разрушиться целое звездное скопление.

Черные дыры в центрах галактик

Астрофизик Ольга Сильченко об открытии сверхмассивной черной дыры в туманности Андромеды, исследованиях Джона Корменди и темных гравитирующих телах:

Природа космических радиоисточников

Астрофизик Анатолий Засов о синхротронном излучении, черных дырах в ядрах далеких галактик и нейтральном газе:

Промежуточные черные дыры

Не так давно ученые нашли новый вид - черные дыры средней массы (промежуточные). Они могут формироваться, когда звезды в скоплении сталкиваются, поддавшись цепной реакции. В итоге, падают в центр и формируют сверхмассивную черную дыру.

В 2014 году астрономы обнаружили промежуточный тип в рукаве спиральной галактики. Их очень сложно найти, потому что могут располагаться в непредсказуемых местах.

Микрочерные дыры

Физик Эдуард Боос о безопасности БАК, рождении микрочерной дыры и понятии мембраны:

Теория черных дыр

Черные дыры - чрезвычайно массивные объекты, но охватывают сравнительно скромный объем пространства. Кроме того, обладают огромной гравитацией, не позволяя объектам (и даже свету) покинуть их территорию. Однако, напрямую увидеть их невозможно. Исследователям приходится обращаться к излучению, появляющемуся, когда черная дыра питается.

Интересно, но бывает так, что вещество, направляющееся к черной дыре, отскакивает от горизонта событий и выбрасывается наружу. При этом формируются яркие струи материала, передвигающиеся на релятивистских скоростях. Эти выбросы можно зафиксировать на больших дистанциях.

– удивительные объекты, в которых сила тяжести настолько огромна, что может сгибать свет, деформировать пространство и искажать время.

В черных дырах можно выделить три слоя: внешний и внутренний горизонт событий и сингулярность.

Горизонт событий черной дыры – граница, где у света пропадают все шансы на бегство. Как только частичка переходит этот рубеж, она не сможет уйти. Внутренняя область, где находится масса черной дыры, называется сингулярностью.

Если мы говорим с позиции классической механики, то ничто не может покинуть черную дыру. Но квантовая вносит свою поправку. Дело в том, что у каждой частицы есть античастица. Они обладают одинаковыми массами, но разным зарядом. Если пересеклись, то могут аннигилировать друг друга.

Когда такая пара возникает за пределами горизонта событий, то одна из них может втянуться, а вторая оттолкнется. Из-за этого горизонт способен уменьшиться, а черная дыра разрушиться. Ученые все еще пытаются изучить этот механизм.

Аккреция

Астрофизик Сергей Попов о сверхмассивных черных дырах, образовании планет и аккреции вещества в ранней Вселенной:

Наиболее известные черные дыры

Часто задаваемые вопросы о черных дырах

Если более емко, то черная дыра - определенный участок в космосе, в котором сконцентрировано такое огромное количество массы, что ни одному объекту не удается избежать гравитационного влияния. Когда речь идет о гравитации, мы полагаемся на общую теорию относительности, предложенную Альбертом Эйнштейном. Чтобы разобраться в деталях изучаемого объекта, будем двигаться поэтапно.

Давайте представим, что вы находитесь на поверхности планеты и подбрасываете булыжник. Если вы не обладаете мощью Халка, то не сможете приложить достаточно силы. Тогда камень поднимется на определенную высоту, но под давлением гравитации рухнет обратно. Если же у вас есть скрытый потенциал зеленого силача, то вы способны придать объекту достаточное ускорение, благодаря которому он полностью покинет зону гравитационного воздействия. Это называется «скорость убегания».

Если разбить на формулу, то эта скорость зависит от планетарной массы. Чем она больше, тем мощнее гравитационный захват. Скорость вылета будет полагаться на то, где именно вы находитесь: чем ближе к центру, тем проще выбраться. Скорость вылета нашей планеты – 11.2 км/с, а вот – 2.4 км/с.

Приближаемся к самому интересному. Допустим у вас есть объект с невероятной концентрацией массы, собранной в крошечном месте. В таком случае скорость убегания превышает скорость света. А мы знаем, что ничто не движется быстрее этого показателя, а значит, никто не сможет преодолеть такую силу и сбежать. Даже световому лучу это не под силу!

Еще в 18 веке Лаплас размышлял над чрезвычайной концентрацией массы. После общей теории относительности Карл Шварцшильд смог найти математическое решение для уравнения теории, чтобы описать подобный объект. Дальше свою лепту внесли Оппенгеймер, Волькофф и Снайдер (1930-е гг.). С того момента люди начали обсуждать эту тему всерьез. Стало ясно: когда у массивной звезды заканчивается топливо, она не способна противостоять силе гравитации и обязана рухнуть в черную дыру.

В теории Эйнштейна гравитация выступает проявлением кривизны в пространстве и времени. Дело в том, что обычные геометрические правила здесь не работают и массивные объекты искажают пространство-время. Черная дыра обладает причудливыми свойствами, поэтому ее искажение видно отчетливее всего. Например, у объекта есть «горизонт событий». Это поверхность сферы, отмечающая черту дыры. То есть, если вы перешагнете этот предел, то назад пути нет.

Если буквально, то это место, где скорость убегания приравнивается к световой. Вне этого места скорость убегания уступает скорости света. Но если ваша ракета способна разогнаться, то энергии хватит на побег.

Сам горизонт довольно странный с точки зрения геометрии. Если вы расположены далеко, то вам покажется, что смотрите на статическую поверхность. Но если подойти ближе, то приходит осознание, что она движется наружу со световой скоростью! Теперь понятно, почему легко войти, но так сложно сбежать. Да, это очень запутанно, ведь фактически горизонт стоит на месте, но одновременно и мчится со скоростью света. Это как в ситуации с Алисой, которой нужно было бежать максимально быстро, чтобы просто остаться на месте.

При попадании в горизонт, пространство и время переживают такое сильное искажение, что координаты начинают описывать роли радиального расстояния и времени переключения. То есть «r», отмечающая дистанцию от центра, становится временной, а за «пространственность» теперь отвечает «t». В итоге, вы не сможете перестать передвигаться с меньшим показателем r, как и не способны в обычном времени попасть в будущее. Вы придете к сингулярности, где r = 0. Можно выбрасывать ракеты, запускать двигатель на максимум, но вам не убежать.

Термин «черная дыра» придумал Джон Арчибальд Уилер. До этого их называли «остывшими звездами».

Физик Эмиль Ахмедов об изучении черных дыр, Карле Шварцшильде и гигантских черных дырах:

Существует два способа вычислить, насколько что-то велико. Можно назвать массу или какую величину занимает участок. Если брать первый критерий, то нет конкретного предела массивности черной дыры. Можно использовать любое количество, если вы способны сжать ее до необходимой плотности.

Большая часть этих образований появилась после смерти массивных звезд, поэтому можно ожидать, что их вес должен быть равнозначен. Типичная масса для такой дыры должна быть в 10 раз больше солнечной – 10 31 кг. Кроме того, в каждой галактике должна проживать центральная сверхмассивная черная дыра, чья масса превосходит солнечную в миллион раз – 10 36 кг.

Чем массивнее объект, тем больше массы охватывает. Радиус горизонта и масса прямо пропорциональны, то есть, если черная дыра весит в 10 раз больше другой, то и ее радиус в 10 раз крупнее. Радиус дыры с солнечной массивностью равняется 3 км, а если в миллион раз больше, то 3 миллиона км. Кажется, что это невероятно массивные вещи. Но не будем забывать, что для астрономии это стандартные понятия. Солнечный радиус достигает 700000 км, а у черной дыры у в 4 раза больше.

Допустим, что вам не повезло и ваш корабль неумолимо движется к сверхмассивной черной дыре. Нет смысла бороться. Вы просто выключили двигатели и идете навстречу неизбежному. Чего ожидать?

Начнем с невесомости. Вы пребываете в свободном падении, поэтому экипаж, корабль и все детали невесомы. Чем ближе подходите к центру отверстия, тем сильнее ощущаются приливные гравитационные силы. Например, ваши ноги ближе к центру, чем голова. Тогда вам начинает казаться, что вас растягивают. В итоге, вас просто разорвет на части.

Эти силы неприметны, пока вы не подойдете на удаленность в 600000 км от центра. Это уже после черты горизонта. Но мы говорим об огромном объекте. Если вы падаете в дыру с солнечной массой, то приливные силы охватили бы вас в 6000 км от центра и разорвали до того, как вы подошли к горизонту (поэтому мы отправляем вас в большую, чтобы смогли умереть уже внутри дыры, а не на подходе).

Что внутри? Не хочется разочаровывать, но ничего примечательного. Некоторые объекты могут искажаться по внешнему виду и больше ничего необычного. Даже после перехода горизонта вы будете видеть вещи вокруг себя, так как они движутся с вами.

Сколько на все это уйдет времени? Все завит от вашей удаленности. Например, вы начали с точки покоя, где сингулярность в 10 раз больше радиуса дыры. Для подхода к горизонту понадобится лишь 8 минут, а затем еще 7 секунд, чтобы войти в сингулярность. Если падаете в маленькую черную дыру, то все произойдет быстрее.

Как только перешагнете горизонт, можете стрелять ракетами, кричать и плакать. На все это у вас 7 секунд, пока не попадете в сингулярность. Но ничего уже не спасет. Поэтому просто насладитесь поездкой.

Допустим, вы обречены и падаете в дыру, а ваш друг/подруга наблюдает за этим издалека. Ну, он увидит все по-другому. Заметит, что ближе к горизонту вы замедлите свой ход. Но даже если человек просидит сотню лет, он так и не дождется, когда вы достигнете горизонта.

Попробуем объяснить. Черная дыра могла появиться из коллапсирующей звезды. Так как материал разрушается, то Кирилл (пусть будет вашим другом) видит его уменьшение, но никогда не заметит подхода к горизонту. Именно поэтому их называли «замороженными звездами», ведь кажется, будто они замерзают с определенным радиусом.

В чем же дело? Назовем это оптической иллюзией. Для формирования дыры не нужна бесконечность, как и для перехода через горизонт. По мере вашего подхода свету требуется больше времени, чтобы добраться к Кириллу. Если точнее, то излучение в реальном времени от вашего перехода зафиксируется у горизонта навечно. Вы уже давно перешагнули за линию, а Кирилл все еще наблюдает световой сигнал.

Или же можно подойти с другой стороны. Время тянется дольше возле горизонта. Например, вы обладаете супермощным кораблем. Вам удалось приблизиться к горизонту, побыть там пару минут и выбраться живым к Кириллу. Кого же вы увидите? Старика! Ведь для вас время текло намного медленнее.

Что тогда верно? Иллюзия или игра времени? Все зависит от используемой системы координат при описании черной дыры. Если полагаться на координаты Шварцшильда, то при пересечении горизонта временная координата (t) приравнивается к бесконечности. Но показатели этой системы предоставляют размытое представление того, что происходит возле самого объекта. У линии горизонта все координаты искажаются (сингулярность). Но вам можно использовать обе системы координат, поэтому два ответа имеют силу.

В реальности вы просто станете невидимкой, и Кирилл перестанет вас видеть еще до того, как пройдет много времени. Не стоит забывать о красном смещении. Вы излучаете наблюдаемый свет на определенной волне, но Кирилл увидит его на более длинной. Волны удлиняются по мере приближения к горизонту. Кроме того, не стоит забывать, что излучение происходит в определенных фотонах.

Например, в момент перехода вы отправите последний фотон. Он достигнет Кирилла в определенное конечное время (примерно час для сверхмассивной черной дыры).

Конечно, нет. Не забывайте про существование горизонта событий. Только из этой области вы не можете выбраться. Достаточно просто не приближаться к ней и чувствуйте себя спокойно. Более того, с безопасного расстояния вам этот объект будет казаться самым обычным.

Информационный парадокс Хокинга

Физик Эмиль Ахмедов о действии гравитации на электромагнитные волны, информационном парадоксе черных дыр и принципе предсказуемости в науке:

Не паникуйте, так как Солнцу никогда не трансформироваться в подобный объект, потому что ему просто не хватит массы. Тем более, что оно будет сохранять свой теперешний внешний вид еще 5 миллиардов лет. Затем перейдет к этапу красного гиганта, поглотив Меркурий, Венеру и хорошо поджарив нашу планету, а затем станет обычным белым карликом.

Но давайте предадимся фантазии. Итак, Солнце стало черной дырой. Начнем с того, что сразу нас укутает темнота и холод. Земля и прочие планеты не будут всасываться в дыру. Они продолжат вращаться вокруг нового объекта по обычным орбитам. Почему? Потому что горизонт будет достигать всего 3 км, и гравитация ничего не сможет с нами сделать.

Да. Естественно, мы не можем полагаться на видимое наблюдение, так как свету не удается вырваться. Но есть косвенные улики. Например, вы видите участок, в котором может быть черная дыра. Как это проверить? Начните с измерения массы. Если видно, что в одной области ее слишком много или она как бы незаметна, то вы на верном пути. Есть две точки поиска: галактический центр и двойные системы с рентгеновским излучением.

Таким образом, в 8 галактиках нашли массивные центральные объекты, чья масса ядер колеблется от миллиона до миллиарда солнечных. Массу вычисляют через наблюдение за скоростью вращения звезд и газа вокруг центра. Чем быстрее, тем больше должна быть масса, чтобы удержать их на орбите.

Эти массивные объекты считают черными дырами по двум причинам. Ну, больше просто нет вариантов. Нет ничего массивнее, темнее и компактнее. К тому же есть теория, что у всех активных и крупных галактиках в центре прячется такой монстр. Но все же это не 100% доказательства.

Но в пользу теории говорят две последних находки. У ближайшей активной галактики заметили систему «водяного мазера» (мощный источник микроволнового излучения) возле ядра. При помощи интерферометра ученые отобразили распределение газовых скоростей. То есть, они измерили скорость в пределах половины светового года в галактическом центре. Это помогло им понять, что внутри расположен массивный объект, чей радиус достигает половины светового года.

Вторая находка убеждает еще больше. Исследователи при помощи рентгена наткнулись на спектральную линию галактического ядра, указывающую на присутствие рядом атомов, скорость движения которых невероятно высокая (1/3 световой). Кроме того, излучение соответствовало красному смещению, что отвечает горизонту черной дыры.

Еще один класс можно найти в Млечном Пути. Это звездные черные дыры, формирующиеся после взрыва сверхновой. Если бы они существовали отдельно, то даже вблизи мы бы вряд ли ее заметили. Но нам везет, ведь большинство существуют в двойных системах. Их легко отыскать, так как черная дыра будет тянуть массу своего соседа и влиять на него гравитацией. «Вырванный» материал формирует аккреционный диск, в котором все нагревается, а значит, создает сильное излучение.

Предположим, вам удалось найти двойную систему. Как понять, что компактный объект представляет собою черную дыру? Снова обращаемся к массе. Для этого измерьте орбитальную скорость соседней звезды. Если масса невероятно огромная при таких малых размерах, то вариантов больше не остается.

Это сложный механизм. Подобную тему Стивен Хокинг затронул еще в 1970-х годах. Он говорил, что черные дыры не совсем «черные». Там присутствуют квантово-механические эффекты, заставляющие ее создавать излучение. Постепенно дыра начинает сжиматься. Скорость излучения растет с уменьшением массы, поэтому дыра излучает все больше и ускоряет процесс сжатия, пока не растворится.

Однако, это лишь теоретическая схема, ведь никто не может точно сказать, что происходит на последнем этапе. Некоторые думают, что остается небольшой, но стабильный след. Современные теории не придумали пока ничего лучше. Но сам процесс невероятен и сложен. Приходится вычислять параметры в искривленном пространстве-времени, а сами результаты не поддаются проверке в привычных условиях.

Здесь можно воспользоваться Законом сохранения энергии, но только для коротких продолжительностей. Вселенная может создавать энергию и массу с нуля, но только они должны быстро исчезать. Одно из проявлений – вакуумные флуктуации. Пары частиц и античастиц вырастают из ниоткуда, существуют определенный недолгий срок и гибнут во взаимном уничтожении. При их появлении энергетический баланс нарушается, но все восстанавливается после исчезновения. Кажется фантастикой, но этот механизм подтвержден экспериментально.

Допустим, одна из вакуумных флуктуаций действует возле горизонта черной дыры. Возможно, одна из частиц падает внутрь, а вторая убегает. Сбежавшая забирает с собою часть энергии дыры и может попасть на глаза наблюдателю. Ему покажется, что темный объект просто выпустил частицу. Но процесс повторяется, и мы видим непрерывный поток излучения из черной дыры.

Мы уже говорили, что Кириллу кажется, будто вам нужна бесконечность, чтобы перешагнуть через линию горизонта. Кроме того, упоминалось, что черные дыры испаряются через конечный временной промежуток. То есть, когда вы достигнете горизонта, дыра исчезнет?

Нет. Когда мы описывали наблюдения Кирилла, мы не говорили о процессе испарения. Но, если этот процесс присутствует, то все меняется. Ваш друг увидит, как вы перелетите через горизонт именно в момент испарения. Почему?

Над Кириллом властвует оптическая иллюзия. Излучаемому свету в горизонте событий нужно много времени, чтобы добраться к другу. Если дыра длится вечно, то свет может идти бесконечно долго, и Кирилл не дождется перехода. Но, если дыра испарилась, то свет уже ничто не остановит, и он доберется к парню в момент взрыва излучения. Но вам уже все равно, ведь вы давно погибли в сингулярности.

В формулах общей теории относительности есть интересная особенность – симметричность во времени. Например, в любом уравнении вы можете представить, что время течет назад и получите другое, но все же правильно, решение. Если применить этот принцип к черным дырам, то рождается белая дыра.

Черная дыра – определенная область, из которой ничто не может выбраться. Но второй вариант, это белая дыра, в которую ничто не может упасть. Фактически, она все отталкивает. Хотя, с математической точки зрения, все выглядит гладко, но это не доказывает их существование в природе. Скорее всего, их нет, как и способа это выяснить.

До этого момента мы говорили о классике черных дыр. Они не вращаются и лишены электрического заряда. А вот в противоположном варианте начинается самое интересное. Например, вы можете попасть внутрь, но избежать сингулярности. Более того, ее «внутренность» способна контактировать с белой дырой. То есть, вы попадете в своеобразный туннель, где черная дыра – вход, а белая – выход. Подобную комбинацию называют червоточиной.

Интересно, что белая дыра может находиться в любом месте, даже в другой Вселенной. Если уметь управлять такими червоточинами, то мы обеспечим быструю транспортировку в любую область пространства. А еще круче – возможность путешествий во времени.

Но не пакуйте рюкзак, пока не узнаете несколько моментов. К сожалению, велика вероятность, что таких формирований нет. Мы уже говорили, что белые дыры – вывод из математических формул, а не реальный и подтвержденный объект. Да и все наблюдаемые черные дыры создают падение материи и не формируют червоточин. И конечная остановка – сингулярность.

January 24th, 2013

Из всех гипотетических объектов Вселенной, предсказываемых научными теориями, черные дыры производят самое жуткое впечатление. И, хотя предположения об их существовании начали высказываться почти за полтора столетия до публикации Эйнштейном общей теории относительности, убедительные свидетельства реальности их существования получены совсем недавно.

Давайте начнем с того, как общая теория относительности решает вопрос о природе гравитации. Закон всемирного тяготения Ньютона утверждает, что между двумя любыми массивными телами во Вселенной действует сила взаимного притяжения. По причине такого гравитационного притяжения Земля обращается вокруг Солнца. Общая теория относительности заставляет нас взглянуть на систему Солнце—Земля иначе. Согласно этой теории в присутствии столь массивного небесного тела, как Солнце, пространство-время как бы проминается под его тяжестью, и равномерность его ткани нарушается. Представьте себе эластичный батут, на котором лежит тяжелый шар (например, от боулинга). Натянутая ткань прогибается под его весом, создавая вокруг разрежение. Таким же образом Солнце продавливает пространство-время вокруг себя.



Согласно этой картине Земля просто катается вокруг образовавшейся воронки (за исключением того, что маленький шарик, катающийся вокруг тяжелого на батуте неизбежно будет терять скорость и по спирали приближаться к большому). И то, что мы привычно воспринимаем как силу земного притяжения в нашей повседневной жизни, также есть ни что иное, как изменение геометрии пространства-времени, а не сила в ньютоновском понимании. На сегодня более удачного объяснения природы гравитации, чем дает нам общая теория относительности, не придумано.

А теперь представьте, что произойдет, если мы будем — в рамках предложенной картины — увеличивать и увеличивать массу тяжелого шара, не увеличивая при этом его физических размеров? Будучи абсолютно эластичной, воронка будет углубляться до тех пор, пока ее верхние края не сойдутся где-то высоко над совсем потяжелевшим шаром, и тогда он просто перестанет существовать при взгляде с поверхности. В реальной Вселенной, накопив достаточную массу и плотность материи, объект захлопывает вокруг себя пространственно-временную ловушку, ткань пространства-времени смыкается, и он теряет связь с остальной Вселенной, становясь невидимым для нее. Так возникает черная дыра.

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца. Вскоре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть только звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос — существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 30-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5-3 Ms. Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.


09.07.1911 - 13.04.2008

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теоретиков, в том числе и советских. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У неподвижной дыры это точка, у вращающейся — кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967 года американский физик Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Важнейшее свойство черной дыры — что бы в нее ни попало, обратно оно не вернется. Это касается даже света, вот почему черные дыры и получили свое название: тело, поглощающее весь свет, падающий на него, и не испускающее собственного кажется абсолютно черным. Согласно общей теории относительности, если объект приближается к центру черной дыры на критическое расстояние — это расстояние называется радиусом Шварцшильда, — он уже никогда не сможет вернуться назад. (Немецкий астроном Карл Шварцшильд (Karl Schwarzschild, 1873-1916) в последние годы своей жизни, используя уравнения общей теории относительности Эйнштейна, рассчитал гравитационное поле вокруг массы нулевого объема.) Для массы Солнца радиус Шварцшильда составляет 3 км, то есть, чтобы превратить наше Солнце в черную дыру, нужно уплотнить всю его массу до размера небольшого городка!


Внутри радиуса Шварцшильда теория предсказывает явления еще более странные: всё вещество черной дыры собирается в бесконечно малую точку бесконечной плотности в самом ее центре — математики называют такой объект сингулярным возмущением. При бесконечной плотности любая конечная масса материи, математически говоря, занимает нулевой пространственный объем. Происходит ли это явление реально внутри черной дыры, мы, естественно, экспериментально проверить не можем, поскольку всё попавшее внутрь радиуса Шварцшильда обратно не возвращается.

Не имея, таким образом, возможности «рассмотреть» черную дыру в традиционном смысле слова «смотреть», мы, тем не менее, можем обнаружить ее присутствие по косвенным признакам влияния ее сверхмощного и совершенно необычного гравитационного поля на материю вокруг нее.

Сверхмассивные черные дыры

В центре нашего Млечного Пути и других галактик располагается невероятно массивная черная дыра в миллионы раз тяжелее Солнца. Эти сверхмассивные черные дыры (такое название они получили) были обнаружены по наблюдениям за характером движения межзвездного газа вблизи центров галактик. Газы, судя по наблюдениям, вращаются на близком удалении от сверхмассивного объекта, и простые расчеты с использованием законов механики Ньютона показывают, что объект, притягивающий их, при мизерном диаметре обладает чудовищной массой. Так закрутить межзвездный газ в центре галактики может только черная дыра. Фактически астрофизики нашли уже десятки таких массивных черных дыр в центрах соседних с нашей галактик, и сильно подозревают, что центр любой галактики — суть черная дыра.


Черные дыры со звездной массой

Согласно нашим нынешним представлениям об эволюции звезд, когда звезда с массой, превышающей примерно 30 масс Солнца, гибнет со вспышкой сверхновой, внешняя ее оболочка разлетается, а внутренние слои стремительно обрушиваются к центру и образуют черную дыру на месте израсходовавшей запасы топлива звезды. Изолированную в межзвездном пространстве черную дыру такого происхождения выявить практически невозможно, поскольку она находится в разреженном вакууме и никак не проявляет себя в плане гравитационных взаимодействий. Однако, если такая дыра входила в состав двойной звездной системы (две горячих звезды, обращающихся по орбите вокруг их центра масс), черная дыра будет по-прежнему оказывать гравитационное воздействие на парную ей звезду. Астрономы сегодня имеют более десятка кандидатов на роль звездных систем такого рода, хотя строгих доказательств не получено в отношении ни одной из них.

В двойной системе с черной дырой в ее составе вещество «живой» звезды будет неизбежно «перетекать» в направлении черной дыры. И закручиваться высасываемое черной дырой вещество при падении в черную дыру будет по спирали, исчезая при пересечении радиуса Шварцшильда. При подходе к роковой границе, однако, засасываемое в воронку черной дыры вещество будет неизбежно уплотняться и разогреваться в силу учащения соударений между поглощаемыми дырой частицами, пока не разогреется до энергий излучения волн в рентгеновском диапазоне спектра электромагнитного излучения. Астрономы могут измерить периодичность изменения интенсивности рентгеновского излучения такого рода и вычислить, сопоставив ее с другими доступными данными, примерную массу объекта, «перетягивающего» на себя материю. Если масса объекта превышает предел Чандрасекара (1,4 массы Солнца), этот объект не может являться белым карликом, в которого суждено выродиться нашему светилу. В большинстве выявленных случаев наблюдения подобных двойных рентгеновских звезд массивным объектом является нейтронная звезда. Однако насчитано уже более десятка случаев, когда единственным разумным объяснением является присутствие в двойной звездной системе черной дыры.

Все другие типы черных дыр куда более спекулятивны и основаны исключительно на теоретических изысканиях — экспериментальных подтверждений их существования не имеется вовсе. Во-первых, это черные мини-дыры с массой, сопоставимой с массой горы и сжатой до радиуса протона. Идею об их зарождении на начальной стадии формирования Вселенной непосредственно после Большого взрыва высказал английский космолог Стивен Хокинг (см. Скрытый принцип необратимости времени). Хокинг предположил, что взрывами мини-дыр можно объяснить действительно загадочный феномен точеных вспышек гамма-излучения во Вселенной. Во-вторых, некоторые теории элементарных частиц предсказывают существование во Вселенной — на микро-уровне — настоящего решета из черных дыр, представляющих собой своего рода пену из отбросов мироздания. Диаметр таких микро-дыр предположительно составляет около 10-33 см — они в миллиарды раз мельче протона. На данный момент у нас нет каких-либо надежд на экспериментальную проверку даже самого факта существования таких черных дыр-частиц, не говоря уже о том, чтобы хоть как-то исследовать их свойства.


А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.

А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик - звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.

Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый — черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй — сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений.


Сверхмассивная черная дыра (окрестности) в центре галактики M87 (рентгеновское изображение). Виден выброс (джет) от горизонта событий. Изображение с сайта www.college.ru/astronomy

Поиск скрытых черных дыр — одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения — приблизительно 2000-20 000 электрон-вольт (для сравнения, энергия оптического излучения — около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000-300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» — первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.

Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это — серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет, так как хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.

Некоторые черные дыры считаются более активными, чем их спокойные соседи. Активные черные дыры поглощают окружающее вещество, а если в полет тяготения попадет «зазевавшаяся» звезда, пролетающая мимо, то она непременно будет «съедена» самым варварским способом (разорванная в клочья). Поглощаемое вещество, падая на черную дыру, нагревается до огромных температур, и испытывает вспышку в гамма, рентгеновском и ультрафиолетовом диапазоне. В центре Млечного Пути так же находится сверхмассивная черная дыра, но ее труднее изучать, чем дыры в соседних или даже далеких галактиках. Это связано с плотной стеной газа и пыли, встающей на пути центру Нашей Галактики, ведь Солнечная система находится почти на краю галактического диска. Поэтому наблюдения активности черных дыр гораздо эффективней у тех галактик, ядро которых хорошо просматривается. При наблюдении одной из далеких галактик, расположенной в созвездии Волопаса на расстоянии 4-х миллиардов световых лет, астрономам впервые удалось отследить от начала и почти до конца процесс поглощения звезды супермассивной черной дырой. В течение тысяч лет этот гигантский коллапсар тихо-мирно покоился в центре безымянной эллиптической галактики, пока одна из звезд не осмелилась приблизиться к ней достаточно близко.

Мощная гравитация черной дыры разорвала звезду на части. Сгустки вещества начали падать на черную дыру и при достижении горизонта событий, ярко вспыхивать в ультрафиолетовом диапазоне. Эти вспышки и зафиксировал новый космический телескоп NASA Galaxy Evolution Explorer, изучающий небо в ультрафиолете. Телескоп и сегодня продолжает наблюдать за поведением отличившегося объекта, т.к. трапеза черной дыры еще не закончилась, а остатки звезды продолжают падать в бездну времени и пространства. Наблюдения таких процессов, в конце концов, помогут лучше понять, как черные дыры развиваются вместе с их родительскими галактиками (или, наоборот, галактики развиваются с родительской черной дырой). Более ранние наблюдения показывают, что подобные эксцессы не редкость во Вселенной. Ученые подсчитали, что в среднем звезда поглощается сверхмассивной черной дырой типичной галактики один раз в 10000 лет, но поскольку галактик большое количество, то наблюдать поглощения звезд можно гораздо чаще.


источник